Skip to main content

Simulation and Bisimulation for Probabilistic Timed Automata

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6246))

Abstract

Probabilistic timed automata are an extension of timed automata with discrete probability distributions. Simulation and bisimulation relations are widely-studied in the context of the analysis of system models, with applications in the stepwise development of systems and in model reduction. In this paper, we study probabilistic timed simulation and bisimulation relations for probabilistic timed automata. We present an EXPTIME algorithm for deciding whether two probabilistic timed automata are probabilistically timed similar or bisimilar. Furthermore, we consider a logical characterization of probabilistic timed bisimulation.

Supported in part by the MIUR-PRIN project PaCo - Performability-Aware Computing: Logics, Models and Languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Puterman, M.L.: Markov Decision Processes. J. Wiley & Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  3. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  5. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. TCS 286, 101–150 (2002)

    Article  MathSciNet  Google Scholar 

  6. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of deadline properties in the IEEE 1394 FireWire root contention protocol. Formal Aspects of Computing 14(3), 295–318 (2003)

    Article  Google Scholar 

  7. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. FMSD 29, 33–78 (2006)

    MATH  Google Scholar 

  8. Milner, R.: An algebraic definition of simulation between programs. In: Proc. IJCAI’71, pp. 481–489. William Kaufmann, San Francisco (1971)

    Google Scholar 

  9. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  10. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  11. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993)

    Google Scholar 

  12. Taşıran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 546–562. Springer, Heidelberg (1996)

    Google Scholar 

  13. Bozzelli, L., Legay, A., Pinchinat, S.: On timed alternating simulation for concurrent timed games. In: Proc. FSTTCS’09. LIPIcs, vol. 4, pp. 85–96. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)

    Google Scholar 

  14. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. JCSS 60(1), 187–231 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algorithms for probabilistic simulations LMCS 4(4) (2008)

    Google Scholar 

  16. Holmer, U., Larsen, K.G., Yi, W.: Deciding properties of regular real time processes. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 443–453. Springer, Heidelberg (1992)

    Google Scholar 

  17. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. JACM 32(1), 137–161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Jensen, H.E., Gregersen, H.: Formal design of reliable real time systems. Master’s thesis, Aalborg University (1995)

    Google Scholar 

  20. Jensen, H.E.: Model checking probabilistic real time systems. In: Proc. of the 7th Nordic Work. on Progr. Theory, pp. 247–261. Chalmers Institute of Technology (1996)

    Google Scholar 

  21. Yamane, S.: Probabilistic timed simulation verification and its application to stepwise refinement of real-time systems. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 276–290. Springer, Heidelberg (2003)

    Google Scholar 

  22. Chen, T., Han, T., Katoen, J.P.: Time-abstracting bisimulation for probabilistic timed automata. In: Proc. TASE’08, pp. 177–184. IEEE, Los Alamitos (2008)

    Google Scholar 

  23. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proc. LICS’91, pp. 266–277. IEEE, Los Alamitos (1991)

    Google Scholar 

  24. Laroussinie, F., Schnoebelen, P.: The state explosion problem from trace to bisimulation equivalence. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 192–207. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic – and back. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539. Springer, Heidelberg (1995)

    Google Scholar 

  26. Aceto, L., Laroussinie, F.: Is your model checker on time? On the complexity of model checking for timed modal logics. JLAP 52-53, 7–51 (2000)

    Google Scholar 

  27. Sproston, J.: Model checking for probabilistic timed and hybrid systems. PhD thesis, University of Birmingham (2000)

    Google Scholar 

  28. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Weak bisimulation for probabilistic timed automata and applications to security. In: Proc. SEFM’03, pp. 34–43. IEEE, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sproston, J., Troina, A. (2010). Simulation and Bisimulation for Probabilistic Timed Automata. In: Chatterjee, K., Henzinger, T.A. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2010. Lecture Notes in Computer Science, vol 6246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15297-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15297-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15296-2

  • Online ISBN: 978-3-642-15297-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics