Skip to main content

Improving Individual Identification in Security Check with an EEG Based Biometric Solution

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

  • 2346 Accesses

Abstract

Security issue is always challenging to the real world applications. Many biometric approaches, such as fingerprint, iris and retina, have been proposed to improve recognizing accuracy or practical facility in individual identification in security. However, there is little research on individual identification using EEG methodology mainly because of the complexity of EEG signal collection and analysis in practice. In this paper, we present an EEG based unobtrusive and non-replicable solution to achieve more practical and accurate in individual identification, and our experiment involving 10 subjects has been conducted to verify this method. The accuracy of 10 subjects can reach at 96.77%. The high-level accuracy result has validated the utility of our solution in the real world. Besides, subject combinations were randomly selected, and the recognizing performance from 3 subjects to 10 subjects can still keep equivalent, which has proven the extendibility of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. International Business Machines Corporation 40(3) (2001)

    Google Scholar 

  2. Moss, B.: Getting personal. Biometric security devices gain access to health care facilities. Health Facil. Manage. 15(9), 20–24 (2002)

    Google Scholar 

  3. Stallings, W.: Cryptography and Network Security: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (2003); Pankanti, S., Bolle, R., Jain, A.K. (Guest eds.): Special Issue of IEEE Computer on Biometrics (February 2000)

    Google Scholar 

  4. Klein, D.V.: Foiling the cracker: a survey of, and improvements to, password security. In: Proc. 2nd USENIX Workshop Security, pp. 5–14 (1990)

    Google Scholar 

  5. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technology, Special Issue Image- and Video-Based Biomet. 14(1), 4–20 (2004)

    Article  Google Scholar 

  6. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer, New York (2004)

    MATH  Google Scholar 

  7. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (June 2003)

    MATH  Google Scholar 

  8. Lam, C.F., Kamins, D.: Signature recognition through spectral analysis. Pattern Recognition 22, 39–44 (1989)

    Article  Google Scholar 

  9. Roizenblatt, R., Schor, P., et al.: Iris recognition as a biometric method after cataract surgery. Biomed. Eng. Online 3, 2 (2004)

    Article  Google Scholar 

  10. Markowitz, J.A.: Voice Biometrics. Communications of the ACM 43(9) (September 2000)

    Google Scholar 

  11. Jain, A.K., Pankanti, S.: Biometrics: A Tool for Information Security. IEEE Transactions on Information Forensics and Security 1(2) (June 2006)

    Google Scholar 

  12. Poulos, M., Rangoussi, M., et al.: On the use of EEG features towards person identification via neural networks. Med. Inform. Internet Med. 26(1), 35–48 (2001)

    Article  Google Scholar 

  13. Poulos, M., Rangoussi, M., et al.: Person identification from the EEG using nonlinear signal classification. Methods Inf. Med. 41(1), 64–75 (2002)

    Google Scholar 

  14. Palaniappan, R.: Method of identifying individuals using VEP signals and neural network. IEE Proc.-Sci. Meas. Technol. 151(1) (January 2004)

    Google Scholar 

  15. Birbaumer, N., Hinterberger, T., Kubler, A.: The Thought Translation Device (TTD): neurobevioral mechanisims and clinical outcome. IEEE Transaction on Neural Systems and Rehabilitation Engineering 11(2), 120–122 (2003)

    Article  Google Scholar 

  16. Homan, R.W., Herman, J., et al.: Cerebral location of international 10-20 system electrode placement. Electroencephalography and Clinical Neurophysiology 66(4), 376–382 (1987)

    Article  Google Scholar 

  17. Vorobyov, S., Cichocki, A.: Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis. Biol. Cybern. 86, 293–303 (2002), doi: 10.1007/s00422-001-0298-6 (2002)

    Article  MATH  Google Scholar 

  18. Eichele, T., Calhoun, V.D., Debener, S.: Mining EEG-fMRI using independent component analysis. International Journal of Psychophysiology (2009)

    Google Scholar 

  19. Singh, J., Sapatnekar, P.: Statistical timing analysis with correlated non-gaussian parameters using independent component analysis. In: Proceedings of the 43rd annual conference on Design automation (July 2006)

    Google Scholar 

  20. Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., Ruffini, G.: Unobtrusive Biometric System Based on Electroencephalogram Analysis. EURASIP Journal on Advances in Signal Processing 2008

    Google Scholar 

  21. Pardey, J., Roberts, S., et al.: A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)

    Article  Google Scholar 

  22. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier Inc., Amsterdam (2006)

    MATH  Google Scholar 

  23. Amor, N.B., Benferhat, S., Elouedi, Z.: Naive Bayes vs Decision Trees in Intrusion Detection Systems. In: ACM Symposium on Applied Computing, pp. 420–424 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, Q. et al. (2010). Improving Individual Identification in Security Check with an EEG Based Biometric Solution. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics