Abstract
We describe how nuclear magnetic resonance (NMR) spectroscopy can serve as a substrate for the implementation of classical logic gates. The approach exploits the inherently continuous nature of the NMR parameter space. We show how simple continuous NAND gates with sin/sin and sin/sinc characteristics arise from the NMR parameter space. We use these simple continuous NAND gates as starting points to obtain optimised target NAND circuits with robust, error-tolerant properties. We use Cartesian Genetic Programming (CGP) as our optimisation tool. The various evolved circuits display patterns relating to the symmetry properties of the initial simple continuous gates. Other circuits, such as a robust XOR circuit built from simple NAND gates, are obtained using similar strategies. We briefly mention the possibility to include other target objective functions, for example other continuous functions. Simple continuous NAND gates with sin/sin characteristics are a good starting point for the creation of error-tolerant circuits whereas the more complicated sin/sinc gate characteristics offer potential for the implementation of complicated functions by choosing some straightforward, experimentally controllable parameters appropriately.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Butler, E.: NMR hardware user guide version 001. Tech. rep., Bruker Biospin GmbH, Rheinstetten, Germany (2005)
Levin, V.: Continuous logic - i. basic concepts. Kybernetes 29(16), 1234–1249 (2000)
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Miller, J.: Cartesian genetic programming source code (July 2009), http://sites.google.com/site/millerjules/professional
Roselló-Merino, M., Bechmann, M., Sebald, A., Stepney, S.: Classical computing in nuclear magnetic resonance. Int. J. of Unconventional Computing 6(3–4) (2010)
Stepney, S.: The neglected pillar of material computation. Physica D: Nonlinear Phenomena 237(9), 1157–1164 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bechmann, M., Sebald, A., Stepney, S. (2010). From Binary to Continuous Gates – and Back Again. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds) Evolvable Systems: From Biology to Hardware. ICES 2010. Lecture Notes in Computer Science, vol 6274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15323-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-15323-5_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15322-8
Online ISBN: 978-3-642-15323-5
eBook Packages: Computer ScienceComputer Science (R0)