Abstract
In this paper, we look at two ways to implement one dimensional cellular automata into hyperbolic cellular automata in three contexts: the pentagrid, the heptagrid and the dodecagrid, these tilings being classically denoted by {5,4}, {7,3} and {5,3,4} respectively. As an application, this may give a hint for the boundary between decidable and undecidable problems for hyperbolic cellular automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)
Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular automata. Complex Systems 4, 299–318 (1990)
Margenstern, M.: Cellular Automata in Hyperbolic Spaces Theory, vol. 1, p. 422, OCP, Philadelphia (2007)
Margenstern, M.: Cellular Automata in Hyperbolic Spaces Implementation and computations, vol. 2, p. 360, OCP, Philadelphia (2008)
Margenstern, M.: A new universal cellular automaton on the ternary heptagrid, 35p (2009) arXiv:0903.2108[cs.FL]
Margenstern, M.: Surprising Areas in the Quest for Small Universal Devices. Electronic Notes in Theoretical Computer Science 225, 201–220 (2009)
Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space with three states, 54p. (2010) arXiv:1002.4290[cs.FL]
Margenstern, M.: About the embedding of one dimensional cellular automata into hyperbolic cellular automata, 19p (2010) arXiv:1004.1830[cs.FL]
Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic plane with four states. Theoretical Computer Science (2010) (accepted)
Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space with three states, Discrete Mathematics and Theoretical Computer Science (to appear)
Margenstern, M., Skordev, G.: Tools for devising cellular automata in the hyperbolic 3D space. Fundamenta Informaticae 58(2), 369–398 (2003)
Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid. Parallel Processing Letters 19(2), 227–246 (2009)
Wolfram, S.: A new kind of science. Wolfram Media, Inc. (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Margenstern, M. (2010). Towards the Frontier between Decidability and Undecidability for Hyperbolic Cellular Automata. In: Kučera, A., Potapov, I. (eds) Reachability Problems. RP 2010. Lecture Notes in Computer Science, vol 6227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15349-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15349-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15348-8
Online ISBN: 978-3-642-15349-5
eBook Packages: Computer ScienceComputer Science (R0)