Skip to main content

Enhanced Foundry Production Control

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6261))

Abstract

Mechanical properties are the attributes that measure the faculty of a metal to withstand several loads and tensions. Specifically, ultimate tensile strength is the force a material can resist until it breaks and, thus, it is one of the variables to control in the foundry process. The only way to examine this feature is the use of destructive inspections that renders the casting invalid with the subsequent cost increment. Nevertheless, the foundry process can be modelled as an expert knowledge cloud upon which we may apply several machine learnings techniques that allow foreseeing the probability for a certain value of a variable to happen. In this paper, we extend previous research on foundry production control by adapting and testing support vector machines and decision trees for the prediction in beforehand of the mechanical properties of castings. Finally, we compare the obtained results and show that decision trees are more suitable than the rest of the counterparts for the prediction of ultimate tensile strength.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sertucha, J., Loizaga, A., Suárez, R.: Improvement opportunities for simulation tools. In: Proceedings of the 16th European Conference and Exhibition on Digital Simulation for Virtual Engineering (2006) (invited talk)

    Google Scholar 

  2. Penya, Y., García Bringas, P., Zabala, A.: Advanced fault prediction in high-precision foundry production. In: Proceedings of the 6th IEEE International Conference on Industrial Informatics, pp. 1673–1677 (2008)

    Google Scholar 

  3. Nieves, J., Santos, I., Penya, Y.K., Rojas, S., Salazar, M., Bringas, P.G.: Mechanical properties prediction in high-precision foundry production. In: Proceedings of the 7th IEEE International Conference on Industrial Informatics (INDIN’09), pp. 31–36 (2009)

    Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  5. Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination: Small sample performance. Technical Report Project 21-49-004, Report Number 11 (1952)

    Google Scholar 

  6. Elfayoumy, S., Yang, Y., Ahuja, S.: Anti-spam filtering using neural networks. In: Proceedings of the International Conference on Artificial Intelligence, ICAI, vol. 4, pp. 984–989

    Google Scholar 

  7. Simani, S., Fantuzzi, C.: Neural networks for fault diagnosis and identification of industrial processes. In: Proceedings of 10th Eurorean Symposium on Artificial Neural Networks (ESANN), pp. 489–494 (2002)

    Google Scholar 

  8. Li, H., Dai, X., Zhao, X.: A nearest neighbor approach for automated transporter prediction and categorization from protein sequences. Bioinformatics 24(9), 1129 (2008)

    Article  Google Scholar 

  9. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures for malware detection. In: Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS), vol. AIDSS, pp. 317–320 (2009)

    Google Scholar 

  10. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Machine-learning-based mechanical properties prediction in foundry production. In: Proceedings of ICROS-SICE International Joint Conference (ICCAS-SICE), pp. 4536–4541 (2009)

    Google Scholar 

  11. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Optimising machine-learning-based fault prediction in foundry production. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5518, pp. 553–560. Springer, Heidelberg (2009)

    Google Scholar 

  12. Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  13. Quinlan, J.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)

    Google Scholar 

  14. Maragoudakis, M., Loukis, E., Pantelides, P.P.: Random forests identification of gas turbine faults. In: ICSENG ’08: Proceedings of the 2008 19th International Conference on Systems Engineering, Washington, DC, USA, pp. 127–132. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  15. Yang, J., Zhanga, Y., Zhu, Y.: Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mechanical Systems and Signal Processing 1, 2012–2024 (2007)

    Article  Google Scholar 

  16. Thissena, U., van Brakela, R., de Weijerb, A.P., Melssena, W.J., Buydens, L.M.C.: Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems 69, 35–49 (2003)

    Article  Google Scholar 

  17. Gonzaga-Cinco, R., Fernández-Carrasquilla, J.: Mecanical properties dependency on chemical composition of spheroidal graphite cast iron. Revista de Metalurgia 42, 91–102 (2006)

    Article  Google Scholar 

  18. Lung, C.W., March, H., N.: Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches. World Scientific Pub. Co. Inc. Singapore (July 1992)

    Google Scholar 

  19. For Testing, A.S., Materials: ASTM D1062 - Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds (2008)

    Google Scholar 

  20. Carrasquilla, J.F., Ríos, R.: A fracture mechanics study of nodular iron. Revista de Metalurgía 35(5), 279–291 (1999)

    Article  Google Scholar 

  21. Hecht, M., Condet, F.: Shape of graphite and usual tensile properties of sg cast iron: Part 1. Fonderie, Fondeur d’aujourd’hui 212, 14–28 (2002)

    Google Scholar 

  22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  23. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. International Journal of Computer Applications in Technology 35(2), 183–193 (2009)

    Article  Google Scholar 

  24. Peng, T., Zuo, W., He, F.: SVM based adaptive learning method for text classification from positive and unlabeled documents. Knowledge and Information Systems 16(3), 281–301 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieves, J., Santos, I., Penya, Y.K., Brezo, F., Bringas, P.G. (2010). Enhanced Foundry Production Control. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds) Database and Expert Systems Applications. DEXA 2010. Lecture Notes in Computer Science, vol 6261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15364-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15364-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15363-1

  • Online ISBN: 978-3-642-15364-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics