Skip to main content

Prediction Functions in Bi-temporal Datastreams

  • Conference paper
Database and Expert Systems Applications (DEXA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6261))

Included in the following conference series:

Abstract

Modern datastream management system (DSMS) assume sensor measurements to be constant valued until an update is measured. They do not consider continuously changing measurement values, although a lot of real world scenarios exist that need this essential property. For instance, modern cars use sensors, like radar, to periodically detect dynamic objects like other vehicles. The state of these objects (position and bearing) changes continuously, so that it must be predicted between two measurements. Therefore, in our work we develop a new bi-temporal stream algebra for processing continuously changing stream data. One temporal dimension covers correct order of stream elements and the other covers continuously changing measurements. Our approach guarantees deterministic query results and correct optimizability. Our implementation shows that prediction functions can be processed very efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arasu, et al.: STREAM: The Standford Stream Data Manager. IEEE Data Engineering Bulletin 26(1) (2003)

    Google Scholar 

  2. Abadi, et al.: The Design of the Borealis Stream Processing Engine. In: CIDR 2005 (2005)

    Google Scholar 

  3. Chandrasekaran, et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR 2003 (2003)

    Google Scholar 

  4. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. on Database Syst. 34(1) (2009)

    Google Scholar 

  5. Morzy, M.: Mining frequent trajectories of moving objects for location prediction. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 667–680. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Goel, S., Imielinski, T.: Prediction-based monitoring in sensor networks: taking lessons from MPEG. SIGCOMM Comput. Commun. Rev. 31(5) (2001)

    Google Scholar 

  7. Lee, C.C., Chiang, Y.C., Shih, C.Y., Tsai, C.L.: Noisy time series prediction using m-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Syst. Appl. 36(3) (2009)

    Google Scholar 

  8. Ilarri, S., Wolfson, O., Mena, E., Illarramendi, A., Sistla, P.: A query processor for prediction-based monitoring of data streams. In: EDBT 2009. ACM, New York (2009)

    Google Scholar 

  9. Snodgrass, R.T., Kucera, H.: The TSQL2 Temporal Query Langauage. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  10. Bettini, C., Dyreson, C.E., Evans, W.S., Snodgrass, R.T., Wang, X.S.: A glossary of time granularity concepts. In: Temporal Databases, Dagstuhl (1997)

    Google Scholar 

  11. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: SIGMOD 2004. ACM, New York (2004)

    Google Scholar 

  12. Jacobi, J., Bolles, A., Grawunder, M., Nicklas, D., Appelrath, H.J.: A physical operator algebra for prioritized elements in data streams. Computer Science - Research and Development 1(1) (2009)

    Google Scholar 

  13. Brinkhoff, T.: Generating network-based moving objects. In: SSDBM 2000. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bolles, A., Grawunder, M., Jacobi, J., Nicklas, D., Appelrath, H.J. (2010). Prediction Functions in Bi-temporal Datastreams. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds) Database and Expert Systems Applications. DEXA 2010. Lecture Notes in Computer Science, vol 6261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15364-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15364-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15363-1

  • Online ISBN: 978-3-642-15364-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics