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Abstract

We show that it is Unique Games-hard to approximate the maximwf a submodular function
to within a factor0.695, and that it is Unique Games-hard to approximate the maxirafia
symmetric submodular function to within a factoi39. These results slightly improve previous
results by Feige, Mirrokni and Vondrak (FOCS 2007) who skdwvihat these problems are NP-
hard to approximate to withid/4 + £ = 0.750 and5/6 + ¢ ~ 0.833, respectively.

1 Introduction

Given a ground sdl/, consider the problem of finding a s&tC U which maximizes some function
f: 2V — R* which issubmodulayi.e., satisfies

FISUT)+F(SNT) < f(5) + F(T).

for everyS,T C U. The submodularity property is also known as the propergirofnishing returns
since it is equivalent with requiring that, for evetyc 7' C U andi € U \ T, it holds that

F(Tufi}) = £(T) < f(SU{i}) = f(9).

There has been a lot of attention on various submodular g&tion problems throughout the years
(e.g., [10, 7| 2], see also the first chapter|[of| [14] for a mbw@dugh introduction). Many natural
problems can be cast in this general form —examples inclatigal graph problems such as maximum
cut, and many types of combinatorial auctions and allongtimblems.

A further restriction which is also very natural to studysisnmetricsubmodular functions. These
are functions which satisfyf (S) = f(S) for everyS C U, i.e., a set and its complement always
have the same value. A well-studied example of a symmetbhmsdular maximization problem is
the problem to find a maximum cut in a graph.

Since it includes familiar NP-hard problems such as maxincuiras a special case, submodular
maximization is in general NP-hard, even in the symmetrgecaAs a side note, a fundamental and
somewhat surprising result is that submodutanimizationhas a polynomial time algorithm[4].

To cope with this hardness, there has been much focus oreefficifinding good approximate
solutions. We say that an algorithm is @arapproximation algorithm if it is guaranteed to output a set
S for which f(S) > a - f(SopT) WhereSpptis an optimal set. We also allow randomized algorithms
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in which case we only require that the expectatiorf @) (over the random choices of the algorithm)
is at leastx - f(SoprT)-

In many special cases such as the maximum cut problem, itryseasy to design a constant
factor approximation (in the case of maximum cut it is easysé¢e that a random cut is &g/2-
approximation). For the general case of an arbitrary suluaodunctions, Feige et al._[2] gave a
(2/5 — o(1))-approximation algorithm based on local search, and préivatda uniformly random set
is a 1/2-approximation for the symmetric case. T{®&/5 — o(1))-approximation has been slightly
improved by Vondrak [13] who achievedat1-approximation algorithm, which is currently the best
algorithm we are aware of.

Furthermore,[[2] proved that in thgalue) oracle mode{where the submodular function to be
maximized is given as a black box), no algorithm can achievatia better than /2 + ¢, even in
the symmetric case. However, this result says nothing atheutase when one is given arplicit
representatiorof the submodular function — say, a graph in which one wanfstba maximum cut.
Indeed, in the case of maximum cut there is in faGt&8-approximation algorithm, as given by a
famous result of Goemans and Williamson [3]. In the expliefiresentation model, the best current
hardness results, also given by [2], are that it is NP-haapfmoximate the maximum of a submodular
function to within3/4 + ¢ in the general case a6 + ¢ in the symmetric case.

1.1 Our Results

In this paper we slightly improve the inapproximability uéis of [2]. However, as opposed tol [2]
we do not obtain NP-hardness but only hardness assumindgskbiniqgue Games Conjectuig) GC)
[5]. The conjecture asserts that a problem known as UniquadSaor Unique Label Cover, is very
hard to approximate. See e.gl [5] for more details. Whilestatus of the UGC is quite open, our
results still imply that obtaining efficient algorithms thmeat our bounds would require a fundamental
breakthrough.

For general submodular functions we prove the followingtben.

Theorem 1.1. It is UG-hard to approximate the maximum of a submodular tionco within a factor
0.695.

In the case of symmetric functions we obtain the followingitoa.

Theorem 1.2. For everye > 0 itis UG-hard to approximate the maximum of a symmetric suhiizo
function to within a factof709/960 + ¢ < 0.739

These improved inapproximability results still fall shoftcoming close to the /2-barrier in the
oracle model. Unfortunately, while marginal improvmentouor results may be possible, we do not
believe that our approach can come close to a factdr It remains a challenging and interesting open
guestion to determine the exact approximability of exgiigiepresented submodular functions.

1.2 Our Approach

As in [2], the starting point of our approach is hardness gfrapimation for constraint satisfaction

problems (CSPs), an area which, due to much progress duminast 15 years, is today quite well
understood. Here it is useful to take a slightly differer@wpoint. Instead of thinking of the family of

subsetV of U, we consider the set of binary string8, 1} of lengthn = |U|, indentified with2V

in the obvious way. These views are of course equivalent lamdighout the paper we shift between
them depending on which view is the most convenient.
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For a stringr € {0,1}" and ak-tuple C' € [n}* of indices, letr¢ € {0, 1}* denote the string of
lengthk which, in positionj € [k] has the bitzc,. Now, given a functiory : {0, 1}* — R, we define
the problem M\x CSP'(f) as follows. An instance of Mx CSP"(f) consists of a list ok-tuples
of variablesC1, . .., C,, € [n]*. These specify a functioR : {0,1}"* — R* by

Fa)= " flae)

1=1

and the problem is to find an< {0, 1}" to maximizez.

Note that if f is submodular then every instanEeof MAx CSP*(f) is submodular and Mx CSP"(f)
is a special case of the submodular maximization problem.

Next, we use a variation of a result by the author and Mos$eTHe result of[[1] is for CSPs where
one allowsnegated Iitera@, which can not be allowed in the context of submodular mazation.
However, in Theorer 3.2 we give a simple analogue of thetre${ll] for the MAx CSP' (f) setting.

Roughly speaking the hardness result says the followingnp&se that there is airwise inde-
pendendistribution, such that the expectation gfundery is at least;, but that the expectation gf
under theuniformdistribution is at most. Then Max CSP'(f) is UG-hard to approximate to within
a factor ofs/c.

The hardness result suggests the following natural apprda&e a pairwise independent distri-
bution 1 with small support, and let, : {0, 1}* — {0,1} be the indicator function of the support
of u. Then takef to be a “minimum submodular upper bound”1g, by which we mean a submod-
ular function satisfyingf(x) > 1,(x) for everyz while having small expectation under the uniform
distribution.

To make this plan work, there are a few small technical coratibns (hidden in the “roughly
speaking” part of the description of the hardness result@btinat we need to overcome, making the
final construction slightly more complicated. Unforturgtenderstanding the “minimum submodular
upper bound” of the families of indicator functions that weewappears difficult, and to obtain our
results, we resort to explicitly computing the resultingpsdular functions for smak.

Let us compare our approach with that lof [2]. As mentionedvaptheir starting point is also
hardness of approximation for constraint satisfaction.weler, here their approach diverges from
ours: they construct a gadget reduction fromkhkIN problem (linear equationsiod 2 where each
equation involves only: variables). This gadget introduces two variabt€sindz! for every variable
x; in the k-LIN instance, and each equatiefy @ ... ® z;, = b is replaced by some submodular
function f on the2k new variables corresponding to thg's. The analysis then has to make sure that
there is always an optimal assignment where for eagkactly one of? andz; equalsl, which for
the inapproximability of3/4 becomes quite delicate. In our approach, which we feel imatural
and direct, we don’t run into any such issues.

1.3 Organization

In Sectiorl 2 we set up some more notation that we use throaghepaper and give some additional
background. In Sectidn 3 we describe the hardness restilistoar starting point. In Sectidd 4 we
describe in more detail the construction outlined abovd, farally, in Sectiori b, we describe how to
obtain the concrete bounds given in Theoréms 1.1and 1.2.

Where each “constraintf(zc,) of F is of the more general fornfi(zc, + 1;) for somel; € {0,1}*, where+ is
interpreted as addition oveF'(2)*.



2 Notation and Background

Throughout the paper, we identify binary strings{iih 1}" and subsets ofiz| in the obvious way.
Analogously to the notatiofs| and S for the cardinality and complement of a subSet [n] we use
|x| andz for the Hamming weight and coordinatewise complement ofiagst: € {0, 1}".

2.1 Submodularity

Apart from the two definitions in the introduction, a thirdachcterization of submodularity is that a
function f : 2X — R* is submodular if and only if

FS) = F(SU{iy) - F(SULH + f(SU{FU{j}) <0 (1)

foreveryS C X, andi,j € X\S, i # j. Itis straightforward to check that this condition is eglant
to the diminishing returns property mentioned in the intrctcbn.

2.2 Probability

Forp € [0,1], we use{0, 1}’&) to denote the:-dimensional boolean hypercube with théiased

product distribution, i.e., ifc is a sample from{0, 1}’&,) then the probability that théth coordinate
x; = 1is p, independently for eache [k].

We abuse notation somewhat by making no distinction betweamability distribution functions
w2 {0,1}* — [0,1] and the probability spacg0, 1}*, 1) for suchu. Hence we write, e.gy(z) for
the probability ofz € {0, 1}* undery andE,,,[f(z)] for the expectation of a functiofi : {0, 1}* —
R undery.

A distribution 1 over {0, 1}* is balanced pairwise independeifievery two-dimensional marginal
distribution ofu is the uniform distribution, or formally, if for every < i < j < nandby, by € {0, 1},
it holds that

:(:EI;‘/,[‘TZ =bANxj=b) =1/4.

Recall that the suppofupp(1) of a distributionu over {0, 1}* is the set of strings with non-zero
probability under, i.e.,Supp(p) = {2 € {0,1}* : u(x) >0}

We conclude this section with a lemma that will be useful to us

Lemma 2.1. Let f : {0,1}* — R* be a symmetric set function. Ferc [0, k] let a(t) denote the
average off on strings of weightz, a(t) = ﬁ E\x\:tf(fﬂ)- If @ is monotonely nondecreasing in

[0, k/2], then the maximum average pfunder anyp-biased distribution is achieved by the uniform
distribution. l.e.,

max B [f(@)]=27" ) f(x)

0.1] 2mf0. 1V
pel0 1 z~{0,1}, 2€{0,1}

This intuitively obvious lemma is probably well known butwas do not know a reference we give
a proof here.

Proof. First, we note that without loss of generality we may assumaéft(x) is the indicator function
of the eventk/2 — d < |z| < k/2 + d for somed € [0,k/2]. This is because any as in the
statement of the lemma can be written as a nonnegative lm@abination of such indicator functions
for differentd and if the average of each of these indicator functions isimiard forp = 1/2 then
so is the average dof.



Define f; : {0,1}* — {0,1} as the indicator function of the evept| > k/2 — d and f; :
{0,1}* — {0, 1} as the indicator function of the evejaf > k/2 + d, so thatf(z) = fi(x) — fo(x).
Lete;(p) denote the average ¢f under thep-biased distribution anelp) = e; (p) —e2(p) the average
of f under thep-biased distribution.

We will prove thate’(p) > 0 for p < 1/2 (this is sufficient since we hawgp) = ¢(1 — p) for
symmetry reasons), or in other words thafp) > ¢,(p). Now, fi and f, are indicator functions
of monotone events and therefargp) ande,(p) can be computed by the Margulis-Russo Lemma
[12,8]:

Lemma 2.2. (Margulis-Russo) Lef : {0,1}* — {0,1} be monotone. Far € {0,1}* andi < [K] let
x \ i denotezr with thei'th coordinate set t@), and letz U i denotex with thei’th coordinate set td.

Then i
[f2)] =) [fx\i)=0A f(zUi)=1].

1 “"’N{O 1}<p)

9 g
8}) xN{O’l}?p) i=

Applying Margulis-Russo to the monotone functiofisand f5, and using that they depend only
on |z| it follows that (assuming without loss of generality thias such thak /2 — d is an integer):

ey(p) = el =k/2—d=1]-k e (p) = ezl =k/2+d] -k
240, 1}(,,) 20, 1}(,,)

Hence to prove’| (p) > €4 (p) we have to prove that, for evepy< 1/2

k—1 1 k—1 1
Pr |x|:——(d+—)}2 Pr [|$|=—+(d+—)]
e~ {0135 2 SRNE O s 2 2

This in turn follows immediately fronPr, . ,yx-1[|z] = w] = ("~ Hp® (1 — p)*~1=* since:
7 A(p)

w

| l\.’)

Pr o131 (x| = —(d+3)] B2l (dd (1 _p)%+(d+%) <1 _p>2d+1 1
_ -1
p

k=1
) 2 D
k—1 1 T k=l 1 k—1_ 1y
PrmN{O,l}fp*)l U‘T‘ =5t (d+ 5)] p 2 +(d+2)(1 —p) 2 (d+3)

3 Hardness from Pairwise Independence

In this section we state formally the variation of the hasdneesult of([1] that we use. We first define
the parameters which control the inapproximability rakiattwe obtain.

Definition 3.1. Let f : {0,1}* — R* be a submodular function.
We define theompleteness, (f) of f with respect to a distributiop over {0, 1}* by the expected
value of f undery, i.e.,

We define thesoundness,(f) of f with respect to biag by the expected value gf under the
p-biased distribution, i.e.,
sp(f) = E [f()].
T e,



Finally, we define thesoundness(f) of f by its maximum soundness with respect to any bias,
i.e.,
s(f) = Jnax sp(f)
We can now state the hardness result.

Theorem 3.2. Let i be a balanced pairwise independent distribution oy@r1}*. Then for every
objective functiony : {0,1}* — R* ande > 0, given aMAx CSP"(f) instanceF : {0,1}" — R*
it is UG-hard to distinguish between the cases:

Yes: There is anS C X such thatF'(S) > ¢,(f) —e.
No: ForeveryS C X it holds thatF'(S) < s(f) + .

The proof of Theorerh 312 follows the proof 6fi [1] almost exacFor the sake of completeness,
we give a bare bones proof in Appenfik A.

Consequently, for any submodular functignand pairwise independent distributignwith all
marginals equal, it is UG-hard to approximateaM CSP*(f) to within a factors(f)/c,(f) + < for
everye > 0. Note also that th&lo case is the best possible: there is a trivial algorithm wifiietis a
set such that’(S) > s(f) for every F, by simply letting each input bée with probability p for the p
that maximizess,(f).

As a somewhat technical remark, we mention that The@rehti8.Bads if 1 is not required to be
balanced — it suffices that all the one-dimensional marginathabilitiesPr,.,[x; = 1] are identical,
not necessarily equal tb/2 as in the balanced case. We state the somewhat simpler fooe thiat
is sufficient to obtain our results for submodular functiamsl since that makes it more similar to the
result of [1], which requires the distributignto be balanced.

Let us then briefly discuss the difference between Thearéha®d the main result of [1]. First,
the result of[[1] only applies in the more general setting wvbae allows negated literals, which is
why it can not be used to obtain inapproximability for submlad functions. On the other hand,
this more general setting allows for a stronger conclusiarthe No case, [[1] achieves a soundness
of s;/5(f) + € which in general can be much smaller thg(if). As an example, consider the case
when f : {0,1}® — {0,1} is the logical OR function o} bits. In this case the Mx CSP"(f)
problem is of course trivial — the all-ones assignment Basigll constraints — angdl /) = 1, whereas
s1/2(f) = 7/8. Letting u be the uniform distribution on strings of odd parity (it isaddly verified
that this is a balanced pairwise independent distributi® gets,, (f) = 1, showing that the Mx
k-SAT problem is hard to approximate to withi8 + .

4 The Construction

In this section we make formal the construction outlined éct®n[1.2.

Theoren 3.2 suggests the following natural approach: pigéiavise independent distributign
over{0,1}* and let1, : {0,1}* — {0, 1} be the indicator function of the supportef Then takef to
be a “minimum submodular upper bound”1g, by which we mean a submodular function satisfying
f(x) > 1,(x) for everyx while havings( f) as small as possible (whereag f) is clearly at least).
Note that the smaller the support of the less constrainefl is, meaning that there should be more
room to makes(f) small.

To this end, let us make the following definition.



Definition 4.1. For a subse€ C {0, 1}*, we denote bySM(C) the optimum functiony : {0,1}¥ —
R of the following prograr{ﬁ:

Minimize s(f)
Subjectto f(z) > 1for everyz € C
f is submodular

In addition, we writeSM,,(C) for the optimal f when the objective to be minimized is changed to
sp(f) instead ofs(f). Analogously, we defin&M>™(C) andSM>'™(C) as the optimalf with the
additional restriction thaf is symmetric.

While the objective functior( f) is not linear (or even convex), it turns out that for te that we
are interested iNSM(C) is actually quite well approximated M, /»(C), i.e., we simply minimize
> f(x) (in fact, we even believe that for odf's SM, »(C) gives the exact optimum fd8M(C),
though we have not attempted to prove it). The advantagersfideringSM, /,(C) is of course that it
is given by a linear program, which gives us a reasonablyieffievay of finding it. Armed with this
definition, let us now describe the constructions we use.

4.1 The Asymmetric Case

The family of pairwise independent distributiopghat we consider is a standard construction based
on the Hadamard code. Fix a paraméter 0 and letk = 2! — 1. We identify the set of coordinates
[k] with the set of non-empty subsets[df in some arbitrary way. A string from the distributionu.

is sampled as follows: pick a uniformly random string {0, 1} and defining, for eachh # T C [1],

the coordinatery = @, 1 ¥i-

This construction already has an issue: since the all-zrivgy 0 is in the support of the distribu-
tion, any submodular upper bounditg must havef (0) > 1, implying thatsy(f) = 1. To fix this, we
simply ignore0 when constructing. Formally, letC; = Supp(x)\ {0} C {0, 1}* be the2! —1 strings
in the support of. exceptd. Now we would like to take our submodular functigrto beSM(C), but
we instead take it to b8M, /5 (C), as this function is much more easily computed.

Definition 4.2. For a parametet > 0, letk = 2! — 1 and takeC; C {0,1}* as above. We define
fi =SMy 5(Cy).

Note that using only; instead of the entire support costs us a little in that theptetaness is now
reduced froml toc,(f;) > 1 — 2~ but one can hope (and it indeed turns out that this is the tase
this loss is compensated by a greater improvement in sogsadne

Also, we stress that(f;) is typically not given by the average »(f;) (which is the quantity
actually minimized byf;). Indeed, the points i; all have Hamming weightk + 1) /2 and this is also
wheref; is typically the largest. This cause§f) to be achieved by the-biased distribution for some
p slightly larger thanl /2.

An obvious question to ask is whether usBigl(C;) would give a better result than usiSi/, /> (C;).
For the values of that we have been able to handle, it appears that the answes tuestion is neg-
ative: computingSM,,(C;) for a p that approximately maximizes,( f;) gives f;, indicating that we in
fact havef; = SM(C;).

%In the case when the optimum is not unique, we choose anampiptimalf asSM(C).



4.2 Symmetric Functions

One way of constructing symmetric functions would be to Uedxact same construction as above
but takingSM*™(C,) rather tharSM(C;). However, that is somewhat wasteful, and we achieve better
results by also taking symmetry into account when constrad¢he family of strings’.

Thus, we alter the above construction as follows: rathen tantifying the coordinates with all
non-empty subsets @, we identify them with all subsets @f of odd cardinality. In other words, we
takek = 2!~! and associaté] with all T C [I] such thatT'| is odd. The resulting distributiop is
symmetric in the sense thatifis in the support then so i&

In this case, both the all-zeros strifgand the all-ones strin@ are in the support which is not
acceptable for the same reason as above. Hence, we comssumnodular function by takir(gSym =
Supp(u) \ {0, 1} (note thaiC;>™ | = 2! — 2).

Definition 4.3. For a parametet > 0, letk = 2/~! and takeC™ C {0,1}* as above. We define
S SMT (™).

In this case, since we removeaut of the2' points of the support gf to constructC;”", we have

thate, (f>") > 1 — 2L,
An salient feature off,”" is that all strings ofC;”™ have Hamming weight exactly/2. By
Lemmal2.1, this causes,(f;*™) to be maximized by = 1/2 (the monotonicity of the function

in Lemma 2.1 is not immediately clear). This means that insremetric case, usin@Mii’;(Clsym)
rather tharSM™™ (C;*™) is provably without loss of generality.

5 Concrete Bounds

Unfortunately, understanding the behaviour of the two fesiof functionsf; andflSym (or even just
their soundnesses) for largeppears difficult. There seems to be two conflicting forcesak: on
the one hand; only has2' — 1 = k points so even thoug}j is forced to be large on these there may
still be plenty of room to make it small elsewhere. But on theeo hand, sinc€; is a good code the
elements of; are very pread out (their pairwise Hamming distances arghigu /2), which together
with the submodularity condition appears to forgeo be large.

In this section we study; for smalll, obtaining our hardness results. As discussed towards the
end of the section, there are indications that the inapprakility given by f; actually becomes worse
for largel and that our results are the best possible for this familyonéfions, but we do not yet know
whether these indications are correct.

5.1 Symmetric Functions

We start with the symmetric functions, as these are somemibet than the asymmetric ones in that
their symmetry turn out to causéf;>™) to be achieved by = 1/2, i.e., s(f”™) simply equals the
average offlsym. Table[1 gives a summary of the completeness, soundnesshauroximability
obtained byf;*™ for I € {3,4,5}. We now describe these functions in a more detail.

As a warmup, let us first describe the quite simple funcy@ﬁ" : 2181 — [0, 1] (we leave the even



l c s(f"™) | Inapproximabilitys/c
3| 3/4 5/8 5/6 < 0.8334
41 7/8 43/64 43/56 < 0.7679
5| 15/16 | 709/1024 | 709/960 < 0.7386
Table 1: Behaviour of;»™ for smalll.
5]
e(S) |0 1 2 3 4 5 6 7 8
0O |0 1/8 2/8 3/8 4/8 5/8 6/8 718 1
1 (- - - = = 19/32 22/32 24/32 26/32
- - - - = - 20/32 23/32 24/3p

sym

Table 2: Description of;>"" (S) as a function ofS| ande(S) for |S| < 8.

easier functionf3”™ to the interested reader). Its definition is as follows:

f(S) if|S|>4

sym |S]/4 if |S| <4

4 (S) = . . ,sym C
1 if |S| =4andSisinC;

3/4  otherwise

That £;"™(S) is submodular is easily verified. It is also easy to check temnmal2.1 applies and
therefore we have that f;”") = s o(f;""), Which is straightforward to compute (note tha}"™ | =

14):

sip(fP) =27" (2(?) é+2<§> ;+2<§> %+14. 1+ <<i> - 14> Z) :g_i

Let us then move on to the next functigf’™ : 2[*6) — [0, 1], giving an inapproximability of
0.7386. It turns out that one can talf@ym(S) to be a function of two simple properties 8§f namely
its cardinality|S|, and the distance frorfi to C¥™. Specifically, for|S| < 8 let us define th@aumber
of errorse(S) as the minimum number of elements that must be removed Fdmget a subset of

some setirc:’". Formally

e(S)= min |S\C|,
cec™

or equivalently,d(S,C™) = 8 — | S| + 2¢(S), whered(S, ™) is the Hamming distance from the
binary string corresponding t6 to the nearest element @&”". Table[2 gives the values g™
for all |S| < 8, and for|S| > 8 the value offsY™(S) is given by 2™ (S). Note that, for sets with
e(S) = 0, i.e., no errorsf2"™ (S) is simply | S| /8, which is what one would expect. However, for sets
with errors, fgym(S) has a more complicated behaviour and it is far from clear linsvgeneralizes to
larger!.

Veryfing that f2'™ is indeed submodular is not as straightforward as with". We have not

attempted to construct a shorter proof of this than simpgcking condition[(ll) for eveng, i andj, a
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l c s(f1) Inapproximabilitys/c
7/8 < 0.6275 < 0.7172
4| 15/16 | < 0.6508 < 0.6942

Table 3: Behaviour of; for smalli.

task which is of course best suited for a computer progranicfwik straightforward to write and runs
in a few seconds).

A computer program is also the best way to compute the sossdng”™). It is almost obvious
from inspection of Tabl&]2 thaf>’™ satisfies the monotonicity condition of Lemmal2.1 (the only
possible source of failure is that the table only impliest tthe@ average oﬁ";ym on sets of sizeés
is between20/32 and24/32, and that the average on sets of sizes betweer23/32 and28/32).

It turns out that the conditions of LemmiaR.1 are indeed fsadisand that the average gf'™ is
s1/2(f37") = 709/1024.

Concluding this discussion offym, it is tempting to speculate on its behaviour for largeWe
have made a computation '™ : 2132 — [0, 1], under the assumption thA™ (S) only depends on
|S| and the multiset of distances to every point of the suppc@ﬁ’(ﬂ‘?. Under this assumption, our com-
putations indicate that f;'™) ~ 0.7031 giving an inapproximatibility ok(f5*™)/(31/32) ~ 0.7258,
improving uponfgym. However, as these computations took a few days they are quibhbersome to
verify (and we have not even made a careful verification ofrtloeirselves) and therefore we do not

claim this stronger hardness as a theorem.

5.2 Asymmetric Functions

We now return our focus to the asymmetric case. Table 3 descthe hardness ratios obtained from
fi for the case$ = 3 and/ = 4.

We begin with the description of the functigh : 2[7) — [0,1]. Similarly to the definitione(.S)
used in the description gfgym, let us say that C [7] has no errorsf it is a subset or a superset of
someC € Cs. In other words, if|S| < 4 it has no errors if it can be transformed to a seCinby
adding some elements, and/#| > 4 it is has no errors if it can be transformed to a codeword by
removing some elements. The functignis as follows:

|S|/4 if |S| < 4 and has no errors
f5(8) = (7—1S|)/3 if |S| > 4 and has no errors

11/24 if |S| = 3 and has errors

17/24 if |S| = 4 and has errors

As with ™, it is not completely obvious that; satisfies the submodularity condition and there are
a few cases to verify, best left to a computer program.

The average ofs is 637/1024 ~ 0.622. However, sincefs takes on its largest values at sets of
size(k +1)/2 = 4, thep-biased average is larger than this for sgme 1/2. It turns out thats( f4)
is obtained by the-biased distribution fop ~ 0.542404, giving s(f4) ~ 0.627434 < 0.6275.

We are left with the description of; : 2[*51 — [0, 1], which is also the most complicated function
yet. One might hope thgt, shares the simple structure of the previous functions -tthdapends only
on |S| and the distance df to the nearest’ € C,. However, the best function under this assumption
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turns out to give a worse result thgh Instead,f, depends onS| and the multiset of distances to all
elements ot,.

To describefy, define forS C [15] the multisetD(S) as the multiset of distances to all thé
strings inC,4. For instance, foS = (), D(S) consists of the numbe&rrepeated 5 times, reflecting the
fact that all strings o€, have weigh®, and forS € C, we have thaD(S) consists of the numbe¥
repeated 4 times, together with a single because the distance between any pair of strind@s ie 8.

Table[4 describes the behaviour Hf(S) as a function ofS| and D(S)H In the tableD(5) is
described by a string of the fora{"* d;"* ..., with d; < dy < ...and)_ m; = 15, indicating thatn;
strings ofC, are at distancd; from S, thatms strings are at distane&, and so on. Thus, fof = ()
the description oD(.9) is “8'%”, and for S € C, the description oD(S) is “018'4”.

The #S column of Tabld ¥ gives the total number §fC [15] having this particular value of
(IS],D(S)), and the last column gives the actual valuef@f multiplied by 448 to make all values
integers.

Again, checking thaf, is submodular is a tedious task best suited for a computeraverage of
f1159519345/(448 - 2'5) ~ 0.6485, but, as withfs, s(f4) is somewhat larger than this. It turns out
that thep maximizings, (f4) is roughlyp ~ 0.526613, and thats(f4) ~ 0.650754 < 0.6508.

Finally, we mention that as in the symmetric case, we haveeraatcbmputation of the next func-
tion, f5, again under the assumption that it depends only on thesautif distances to the codewords.
Under this assumption it turns out that»(f5) ~ 0.6743, meaning that the inapproximability ob-
tained can not be better than,,(f5)/(31/32) ~ 0.6961 which is worse than the inapproximability
obtained fromf;.
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A Proof of Theorem[3.2

To prove Theorerh 312 we only givedictatorship teswith certain properties. The method of trans-
lating such a test into a hardness result under the UGC, dnzink to the results of Khot et al.|[6] for
MaAXx CuT is by now quite standard (see elg.|[11]).

A.1 Background: Polynomials, Quasirandomness and Correlgon Bounds

To set up the dictatorship test we need to mention some bawkdmaterial.

Afunction F' : {0,1}" — Ris said to a be dictator if G(z) = x; for somei € [n], i.e.,G simply
returns the’th coordinate.

Now, any functionF' : {0,1}" — R can be written uniquely as a multilinear polynomig|z) =
ZSQM cgx® for some set of coefficientsy, wherez® := [1;cg - With this view there is an obvious
extension of the domain df to [0, 1]™ (or evenR", but we shall only be interested [, 1]™).

We say that such a polynomial (8, 7)-quasirandonif for every i € [n] it holds that

Z chgT.

i€SC[n]
s1<d

Note that a dictator is in some sense the extreme opposit&lof-g&quasirandom function as a dictator
is not even(1, 7)-quasirandom for < 1.

The main tool to obtain the soundness is the following “naisgelation bound” result of Mossel
[Q] (Theorem 6.6 and Lemma 6.9), which we state here in a dieghform in order to keep the amount
of background necessary to a minimum.
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Theorem A.1l. Lete > 0 and lety be a balanced pairwise independent probability distribotover
{0, 1}* such thatu(z) > 0 for everyz € {0,1}*. Then there existg, 7 > 0 such that the following
holds for alln.

LetF,..., Fy: {0,1}"™ — [0, 1] be(d, 7)-quasirandom functions. Then

k

k
H E(wl,ia v 7wn7i)] - HE[E]
i=1

i=1

E

W1y...,Wn

<&,

wherews, ..., w, € {0,1}* are drawn independently from and w; ; € {0,1} denotes thejth
coordinate ofw;.

A.2 Dictatorship Test

We now give the dictatorship test, which by the standard exsmn from dictatorship tests to hardness
implies Theorer 3]2. In the dictatorship test, the functfan[0, 1]* — [0, 1] has the same role as the
function f : {0,1}* — R* in Theoren{ 3.2 — as mentioned in the previous section we danthe
unique multilinear extension to make the domain the entiré]*, and the range can be taken to be
[0, 1] without loss of generality by simply scaling the functionado

Theorem A.2. For everye there ared, > 0 such that the following holds. Let: [0,1]* — [0,1]
and 1 be a balanced pairwise independent distribution of@y1}*. There is a dictatorship test,
which when run on a functiof : {0,1}" — [0, 1] has the following properties:

1. AqueriesF'in k positionszy, . .., z; € {0,1}™ and then accepts with probabilit( F'(z1), ..., F(zk)).
2. If Fis a dictator thenA accepts with probability at least, (f) — .
3. If F'is (d, 7)-quasirandom thepd accepts with probability at mos{( f) + «.
Proof. Let y/ be the distribution ovef0, 1}* defined by
p=1-epn+el,

wherel/ denotes the uniform distribution (in other words, a sampdenfy’ is obtained by sampling
from g, with probability 1 — e and otherwise, with probability, taking a uniformly random element
of {0,1}*). Note thaty’ is also balanced pairwise independent, and more impoyténsatisfies
¢ (x) > 0 for all = € {0, 1}* which will allow us to apply Theorefm Al1.

Now the testA is as follows:

e Pick a randontk-by-n matrix X over{0, 1} by letting each column be a sample frqrf) inde-
pendently.

o Letxy,...,z; € {0,1}" be the rows ofX and letF (X) = (F(x1),...,F(z)) € {0,1}* be
the values off’ on thesek points.

e Accept with probabilityf (F'(X)).

The first property ofd is clear from its definition. For the completeness propertye that if ' is
a dictator ther¥’(X) € {0, 1}* is just some column ok and therefore distributed accordingtg so
that

Ef(FX)] = E [f(x)]=(1-¢) E[f(x)]+e E [f(z)]> E [f()] —e=cu(f) —e

xeop! T x~U 1
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We now turn to the soundness property.4f Lets’ = /2% and letd andn be given by Theo-
rem[A.1 with parameter’ and the distribution.’.

Now consider the multilinear expansigifz) = ng[k} csxg Of f and let us analyze the expec-
tation of f (F'(X)) term by term. IfF is (d, 7)-quasirandom then by Theorém A.1 (lettihg= F for
1 € S and lettingF; be the constant one function fogz S) we have

E[[] F(a)) - [[EF] <&

i€S i€S
Let p = E[F] be the bias of the functio&r. Then,[[, ¢ E[F] = p°l equals the expectation af’
under thep-biased distribution. Summing over &lwe obtain
Zc [25] + 2k’ = Ek[f(w)]+azsp(f)+5§s(f)+5,
SClk) = {0 1Y) 240,13
giving the desired soundness property. O
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