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Abstract

We show that it is Unique Games-hard to approximate the maximum of a submodular function
to within a factor0.695, and that it is Unique Games-hard to approximate the maximumof a
symmetric submodular function to within a factor0.739. These results slightly improve previous
results by Feige, Mirrokni and Vondrák (FOCS 2007) who showed that these problems are NP-
hard to approximate to within3/4 + ε ≈ 0.750 and5/6 + ε ≈ 0.833, respectively.

1 Introduction

Given a ground setU , consider the problem of finding a setS ⊆ U which maximizes some function
f : 2U → R

+ which issubmodular, i.e., satisfies

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ).

for everyS, T ⊆ U . The submodularity property is also known as the property ofdiminishing returns,
since it is equivalent with requiring that, for everyS ⊂ T ⊆ U andi ∈ U \ T , it holds that

f(T ∪ {i}) − f(T ) ≤ f(S ∪ {i}) − f(S).

There has been a lot of attention on various submodular optimization problems throughout the years
(e.g., [10, 7, 2], see also the first chapter of [14] for a more thorough introduction). Many natural
problems can be cast in this general form – examples include natural graph problems such as maximum
cut, and many types of combinatorial auctions and allocation problems.

A further restriction which is also very natural to study issymmetricsubmodular functions. These
are functions which satisfyf(S) = f(S) for everyS ⊆ U , i.e., a set and its complement always
have the same value. A well-studied example of a symmetric submodular maximization problem is
the problem to find a maximum cut in a graph.

Since it includes familiar NP-hard problems such as maximumcut as a special case, submodular
maximization is in general NP-hard, even in the symmetric case. As a side note, a fundamental and
somewhat surprising result is that submodularminimizationhas a polynomial time algorithm [4].

To cope with this hardness, there has been much focus on efficiently finding good approximate
solutions. We say that an algorithm is anα-approximation algorithm if it is guaranteed to output a set
S for whichf(S) ≥ α · f(SOPT) whereSOPT is an optimal set. We also allow randomized algorithms
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in which case we only require that the expectation off(S) (over the random choices of the algorithm)
is at leastα · f(SOPT).

In many special cases such as the maximum cut problem, it is very easy to design a constant
factor approximation (in the case of maximum cut it is easy tosee that a random cut is a1/2-
approximation). For the general case of an arbitrary submodular functions, Feige et al. [2] gave a
(2/5 − o(1))-approximation algorithm based on local search, and provedthat a uniformly random set
is a 1/2-approximation for the symmetric case. The(2/5 − o(1))-approximation has been slightly
improved by Vondrák [13] who achieved a0.41-approximation algorithm, which is currently the best
algorithm we are aware of.

Furthermore, [2] proved that in the(value) oracle model(where the submodular function to be
maximized is given as a black box), no algorithm can achieve aratio better than1/2 + ε, even in
the symmetric case. However, this result says nothing aboutthe case when one is given anexplicit
representationof the submodular function – say, a graph in which one wants tofind a maximum cut.
Indeed, in the case of maximum cut there is in fact a0.878-approximation algorithm, as given by a
famous result of Goemans and Williamson [3]. In the explicitrepresentation model, the best current
hardness results, also given by [2], are that it is NP-hard toapproximate the maximum of a submodular
function to within3/4 + ε in the general case and5/6 + ε in the symmetric case.

1.1 Our Results

In this paper we slightly improve the inapproximability results of [2]. However, as opposed to [2]
we do not obtain NP-hardness but only hardness assuming Khot’s Unique Games Conjecture(UGC)
[5]. The conjecture asserts that a problem known as Unique Games, or Unique Label Cover, is very
hard to approximate. See e.g. [5] for more details. While thestatus of the UGC is quite open, our
results still imply that obtaining efficient algorithms that beat our bounds would require a fundamental
breakthrough.

For general submodular functions we prove the following theorem.

Theorem 1.1. It is UG-hard to approximate the maximum of a submodular function to within a factor
0.695.

In the case of symmetric functions we obtain the following bound.

Theorem 1.2. For everyε > 0 it is UG-hard to approximate the maximum of a symmetric submodular
function to within a factor709/960 + ε < 0.739

These improved inapproximability results still fall shortof coming close to the1/2-barrier in the
oracle model. Unfortunately, while marginal improvments of our results may be possible, we do not
believe that our approach can come close to a factor1/2. It remains a challenging and interesting open
question to determine the exact approximability of explicitly represented submodular functions.

1.2 Our Approach

As in [2], the starting point of our approach is hardness of approximation for constraint satisfaction
problems (CSPs), an area which, due to much progress during the last 15 years, is today quite well
understood. Here it is useful to take a slightly different viewpoint. Instead of thinking of the family of
subsets2U of U , we consider the set of binary strings{0, 1}n of lengthn = |U |, indentified with2U

in the obvious way. These views are of course equivalent and throughout the paper we shift between
them depending on which view is the most convenient.
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For a stringx ∈ {0, 1}n and ak-tupleC ∈ [n]k of indices, letxC ∈ {0, 1}k denote the string of
lengthk which, in positionj ∈ [k] has the bitxCj

. Now, given a functionf : {0, 1}k → R
+, we define

the problem MAX CSP+(f) as follows. An instance of MAX CSP+(f) consists of a list ofk-tuples
of variablesC1, . . . , Cm ∈ [n]k. These specify a functionF : {0, 1}n → R

+ by

F (x) =
1

m

m
∑

i=1

f(xCi
)

and the problem is to find anx ∈ {0, 1}n to maximizex.
Note that iff is submodular then every instanceF of MAX CSP+(f) is submodular and MAX CSP+(f)

is a special case of the submodular maximization problem.
Next, we use a variation of a result by the author and Mossel [1]. The result of [1] is for CSPs where

one allowsnegated literals1, which can not be allowed in the context of submodular maximization.
However, in Theorem 3.2 we give a simple analogue of the result of [1] for the MAX CSP+(f) setting.

Roughly speaking the hardness result says the following. Suppose that there is apairwise inde-
pendentdistributionµ such that the expectation off underµ is at leastc, but that the expectation off
under theuniformdistribution is at mosts. Then MAX CSP+(f) is UG-hard to approximate to within
a factor ofs/c.

The hardness result suggests the following natural approach: take a pairwise independent distri-
butionµ with small support, and let1µ : {0, 1}k → {0, 1} be the indicator function of the support
of µ. Then takef to be a “minimum submodular upper bound” to1µ, by which we mean a submod-
ular function satisfyingf(x) ≥ 1µ(x) for everyx while having small expectation under the uniform
distribution.

To make this plan work, there are a few small technical complications (hidden in the “roughly
speaking” part of the description of the hardness result above) that we need to overcome, making the
final construction slightly more complicated. Unfortunately, understanding the “minimum submodular
upper bound” of the families of indicator functions that we use appears difficult, and to obtain our
results, we resort to explicitly computing the resulting submodular functions for smallk.

Let us compare our approach with that of [2]. As mentioned above, their starting point is also
hardness of approximation for constraint satisfaction. However, here their approach diverges from
ours: they construct a gadget reduction from thek-L IN problem (linear equationsmod 2 where each
equation involves onlyk variables). This gadget introduces two variablesx0i andx1i for every variable
xi in the k-L IN instance, and each equationxi1 ⊕ . . . ⊕ xik = b is replaced by some submodular
functionf on the2k new variables corresponding to thexij ’s. The analysis then has to make sure that
there is always an optimal assignment where for eachi exactly one ofx0i andx1i equals1, which for
the inapproximability of3/4 becomes quite delicate. In our approach, which we feel is more natural
and direct, we don’t run into any such issues.

1.3 Organization

In Section 2 we set up some more notation that we use throughout the paper and give some additional
background. In Section 3 we describe the hardness result that is our starting point. In Section 4 we
describe in more detail the construction outlined above, and finally, in Section 5, we describe how to
obtain the concrete bounds given in Theorems 1.1 and 1.2.

1Where each “constraint”f(xCi
) of F is of the more general formf(xCi

+ li) for someli ∈ {0, 1}k, where+ is
interpreted as addition overGF (2)k.
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2 Notation and Background

Throughout the paper, we identify binary strings in{0, 1}n and subsets of[n] in the obvious way.
Analogously to the notation|S| andS for the cardinality and complement of a subsetS ⊆ [n] we use
|x| andx for the Hamming weight and coordinatewise complement of a string x ∈ {0, 1}n.

2.1 Submodularity

Apart from the two definitions in the introduction, a third characterization of submodularity is that a
functionf : 2X → R

+ is submodular if and only if

f(S)− f(S ∪ {i}) − f(S ∪ {j}) + f(S ∪ {i} ∪ {j}) ≤ 0 (1)

for everyS ⊆ X, andi, j ∈ X \S, i 6= j. It is straightforward to check that this condition is equivalent
to the diminishing returns property mentioned in the introduction.

2.2 Probability

For p ∈ [0, 1], we use{0, 1}k(p) to denote thek-dimensional boolean hypercube with thep-biased

product distribution, i.e., ifx is a sample from{0, 1}k(p) then the probability that thei’th coordinate
xi = 1 is p, independently for eachi ∈ [k].

We abuse notation somewhat by making no distinction betweenprobability distribution functions
µ : {0, 1}k → [0, 1] and the probability space({0, 1}k , µ) for suchµ. Hence we write, e.g.,µ(x) for
the probability ofx ∈ {0, 1}k underµ andEx∼µ[f(x)] for the expectation of a functionf : {0, 1}k →
R underµ.

A distributionµ over{0, 1}k is balanced pairwise independentif every two-dimensional marginal
distribution ofµ is the uniform distribution, or formally, if for every1 ≤ i < j ≤ n andb1, b2 ∈ {0, 1},
it holds that

Pr
x∼µ

[xi = b1 ∧ xj = b2] = 1/4.

Recall that the supportSupp(µ) of a distributionµ over{0, 1}k is the set of strings with non-zero
probability underµ, i.e.,Supp(µ) = {x ∈ {0, 1}k : µ(x) > 0 }.

We conclude this section with a lemma that will be useful to us.

Lemma 2.1. Let f : {0, 1}k → R
+ be a symmetric set function. Fort ∈ [0, k] let a(t) denote the

average off on strings of weightx, a(t) = 1

(kt)

∑

|x|=t f(x). If a is monotonely nondecreasing in

[0, k/2], then the maximum average off under anyp-biased distribution is achieved by the uniform
distribution. I.e.,

max
p∈[0,1]

E
x∼{0,1}k

(p)

[f(x)] = 2−x
∑

x∈{0,1}

f(x)

This intuitively obvious lemma is probably well known but aswe do not know a reference we give
a proof here.

Proof. First, we note that without loss of generality we may assume thatf(x) is the indicator function
of the eventk/2 − d ≤ |x| ≤ k/2 + d for somed ∈ [0, k/2]. This is because anyf as in the
statement of the lemma can be written as a nonnegative linearcombination of such indicator functions
for differentd and if the average of each of these indicator functions is maximized forp = 1/2 then
so is the average off .

4



Define f1 : {0, 1}k → {0, 1} as the indicator function of the event|x| ≥ k/2 − d and f2 :
{0, 1}k → {0, 1} as the indicator function of the event|x| > k/2 + d, so thatf(x) = f1(x)− f2(x).
Let ej(p) denote the average offj under thep-biased distribution ande(p) = e1(p)−e2(p) the average
of f under thep-biased distribution.

We will prove thate′(p) ≥ 0 for p ≤ 1/2 (this is sufficient since we havee(p) = e(1 − p) for
symmetry reasons), or in other words thate′1(p) ≥ e′2(p). Now, f1 andf2 are indicator functions
of monotone events and thereforee′1(p) ande′2(p) can be computed by the Margulis-Russo Lemma
[12, 8]:

Lemma 2.2. (Margulis-Russo) Letf : {0, 1}k → {0, 1} be monotone. Forx ∈ {0, 1}k andi ∈ [k] let
x \ i denotex with thei’th coordinate set to0, and letx ∪ i denotex with thei’th coordinate set to1.
Then

∂

∂p
E

x∼{0,1}k
(p)

[f(x)] =
k

∑

i=1

Pr
x∼{0,1}k

(p)

[f(x \ i) = 0 ∧ f(x ∪ i) = 1].

Applying Margulis-Russo to the monotone functionsf1 andf2, and using that they depend only
on |x| it follows that (assuming without loss of generality thatd is such thatk/2− d is an integer):

e′1(p) = Pr
x∼{0,1}k−1

(p)

[|x| = k/2 − d− 1] · k e′2(p) = Pr
x∼{0,1}k−1

(p)

[|x| = k/2 + d] · k

Hence to provee′1(p) ≥ e′2(p) we have to prove that, for everyp ≤ 1/2

Pr
x∼{0,1}k−1

(p)

[

|x| =
k − 1

2
− (d+

1

2
)

]

≥ Pr
x∼{0,1}k−1

(p)

[

|x| =
k − 1

2
+ (d+

1

2
)

]

.

This in turn follows immediately fromPrx∼{0,1}k−1
(p)

[|x| = w] =
(k−1

w

)

pw(1− p)k−1−w since:

Prx∼{0,1}k−1
(p)

[

|x| = k−1
2 − (d+ 1

2 )
]

Prx∼{0,1}k−1
(p)

[

|x| = k−1
2 + (d+ 1

2 )
] =

p
k−1
2

−(d+ 1
2
)(1− p)

k−1
2

+(d+ 1
2
)

p
k−1
2

+(d+ 1
2
)(1− p)

k−1
2

−(d+ 1
2
)
=

(

1− p

p

)2d+1

≥ 1.

3 Hardness from Pairwise Independence

In this section we state formally the variation of the hardness result of [1] that we use. We first define
the parameters which control the inapproximability ratio that we obtain.

Definition 3.1. Let f : {0, 1}k → R
+ be a submodular function.

We define thecompletenesscµ(f) of f with respect to a distributionµ over{0, 1}k by the expected
value off underµ, i.e.,

cµ(f) := E
x∼µ

[f(x)]

We define thesoundnesssp(f) of f with respect to biasp by the expected value off under the
p-biased distribution, i.e.,

sp(f) := E
x∼{0,1}k

(p)

[f(x)].
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Finally, we define thesoundnesss(f) of f by its maximum soundness with respect to any bias,
i.e.,

s(f) := max
p∈[0,1]

sp(f)

We can now state the hardness result.

Theorem 3.2. Let µ be a balanced pairwise independent distribution over{0, 1}k. Then for every
objective functionf : {0, 1}k → R

+ andε > 0, given aMAX CSP+(f) instanceF : {0, 1}n → R
+

it is UG-hard to distinguish between the cases:

Yes: There is anS ⊆ X such thatF (S) ≥ cµ(f)− ε.

No: For everyS ⊆ X it holds thatF (S) ≤ s(f) + ε.

The proof of Theorem 3.2 follows the proof of [1] almost exactly. For the sake of completeness,
we give a bare bones proof in Appendix A.

Consequently, for any submodular functionf and pairwise independent distributionµ with all
marginals equal, it is UG-hard to approximate MAX CSP+(f) to within a factors(f)/cµ(f) + ε for
everyε > 0. Note also that theNo case is the best possible: there is a trivial algorithm whichfinds a
set such thatF (S) ≥ s(f) for everyF , by simply letting each input be1 with probabilityp for thep
that maximizessp(f).

As a somewhat technical remark, we mention that Theorem 3.2 still holds if µ is not required to be
balanced – it suffices that all the one-dimensional marginalprobabilitiesPrx∼µ[xi = 1] are identical,
not necessarily equal to1/2 as in the balanced case. We state the somewhat simpler form since that
is sufficient to obtain our results for submodular functionsand since that makes it more similar to the
result of [1], which requires the distributionµ to be balanced.

Let us then briefly discuss the difference between Theorem 3.2 and the main result of [1]. First,
the result of [1] only applies in the more general setting when one allows negated literals, which is
why it can not be used to obtain inapproximability for submodular functions. On the other hand,
this more general setting allows for a stronger conclusion:in the No case, [1] achieves a soundness
of s1/2(f) + ε which in general can be much smaller thans(f). As an example, consider the case
whenf : {0, 1}3 → {0, 1} is the logical OR function on3 bits. In this case the MAX CSP+(f)
problem is of course trivial – the all-ones assignment satisfies all constraints – ands(f) = 1, whereas
s1/2(f) = 7/8. Letting µ be the uniform distribution on strings of odd parity (it is readily verified
that this is a balanced pairwise independent distribution)one getscµ(f) = 1, showing that the MAX

k-SAT problem is hard to approximate to within7/8 + ε.

4 The Construction

In this section we make formal the construction outlined in Section 1.2.
Theorem 3.2 suggests the following natural approach: pick apairwise independent distributionµ

over{0, 1}k and let1µ : {0, 1}k → {0, 1} be the indicator function of the support ofµ. Then takef to
be a “minimum submodular upper bound” to1µ, by which we mean a submodular function satisfying
f(x) ≥ 1µ(x) for everyx while havings(f) as small as possible (whereascµ(f) is clearly at least1).
Note that the smaller the support ofµ, the less constrainedf is, meaning that there should be more
room to makes(f) small.

To this end, let us make the following definition.

6



Definition 4.1. For a subsetC ⊆ {0, 1}k , we denote bySM(C) the optimum functionf : {0, 1}k →
R
+ of the following program2:

Minimize s(f)

Subject to f(x) ≥ 1 for everyx ∈ C

f is submodular

In addition, we writeSMp(C) for the optimalf when the objective to be minimized is changed to
sp(f) instead ofs(f). Analogously, we defineSMsym(C) andSMsym

p (C) as the optimalf with the
additional restriction thatf is symmetric.

While the objective functions(f) is not linear (or even convex), it turns out that for theC’s that we
are interested in,SM(C) is actually quite well approximated bySM1/2(C), i.e., we simply minimize
∑

x f(x) (in fact, we even believe that for ourC’s SM1/2(C) gives the exact optimum forSM(C),
though we have not attempted to prove it). The advantage of consideringSM1/2(C) is of course that it
is given by a linear program, which gives us a reasonably efficient way of finding it. Armed with this
definition, let us now describe the constructions we use.

4.1 The Asymmetric Case

The family of pairwise independent distributionsµ that we consider is a standard construction based
on the Hadamard code. Fix a parameterl > 0 and letk = 2l − 1. We identify the set of coordinates
[k] with the set of non-empty subsets of[l], in some arbitrary way. A stringx from the distributionµ
is sampled as follows: pick a uniformly random stringy ∈ {0, 1}l and defining, for each∅ 6= T ⊆ [l],
the coordinatexT =

⊕

i∈T yi.
This construction already has an issue: since the all-zerosstring0 is in the support of the distribu-

tion, any submodular upper bound to1µ must havef(0) ≥ 1, implying thats0(f) = 1. To fix this, we
simply ignore0 when constructingf . Formally, letCl = Supp(µ)\{0} ⊆ {0, 1}k be the2l−1 strings
in the support ofµ except0. Now we would like to take our submodular functionf to beSM(C), but
we instead take it to beSM1/2(C), as this function is much more easily computed.

Definition 4.2. For a parameterl > 0, let k = 2l − 1 and takeCl ⊆ {0, 1}k as above. We define
fl = SM1/2(Cl).

Note that using onlyCl instead of the entire support costs us a little in that the completeness is now
reduced from1 to cµ(fl) ≥ 1− 2−l, but one can hope (and it indeed turns out that this is the case) that
this loss is compensated by a greater improvement in soundness.

Also, we stress thats(fl) is typically not given by the averages1/2(fl) (which is the quantity
actually minimized byfl). Indeed, the points inCl all have Hamming weight(k+1)/2 and this is also
wherefl is typically the largest. This causess(f) to be achieved by thep-biased distribution for some
p slightly larger than1/2.

An obvious question to ask is whether usingSM(Cl) would give a better result than usingSM1/2(Cl).
For the values ofl that we have been able to handle, it appears that the answer tothis question is neg-
ative: computingSMp(Cl) for ap that approximately maximizessp(fl) givesfl, indicating that we in
fact havefl = SM(Cl).

2In the case when the optimum is not unique, we choose an arbitrary optimalf asSM(C).
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4.2 Symmetric Functions

One way of constructing symmetric functions would be to use the exact same construction as above
but takingSMsym(Cl) rather thanSM(Cl). However, that is somewhat wasteful, and we achieve better
results by also taking symmetry into account when constructing the family of stringsC.

Thus, we alter the above construction as follows: rather than identifying the coordinates with all
non-empty subsets of[l], we identify them with all subsets of[l] of odd cardinality. In other words, we
takek = 2l−1 and associate[k] with all T ⊆ [l] such that|T | is odd. The resulting distributionµ is
symmetric in the sense that ifx is in the support then so isx.

In this case, both the all-zeros string0 and the all-ones string1 are in the support which is not
acceptable for the same reason as above. Hence, we constructa submodular function by takingCsym

l =
Supp(µ) \ {0,1} (note that|Csym

l | = 2l − 2).

Definition 4.3. For a parameterl > 0, let k = 2l−1 and takeCsym
l ⊆ {0, 1}k as above. We define

f sym
l = SMsym

1/2 (C
sym
l ).

In this case, since we removed2 out of the2l points of the support ofµ to constructCsym
l , we have

thatcµ(f
sym
l ) ≥ 1− 21−l.

An salient feature off sym
l is that all strings ofCsym

l have Hamming weight exactlyk/2. By
Lemma 2.1, this causessp(f

sym
l ) to be maximized byp = 1/2 (the monotonicity of the functiona

in Lemma 2.1 is not immediately clear). This means that in thesymmetric case, usingSMsym
1/2 (C

sym
l )

rather thanSMsym(Csym
l ) is provably without loss of generality.

5 Concrete Bounds

Unfortunately, understanding the behaviour of the two families of functionsfl andf sym
l (or even just

their soundnesses) for largel appears difficult. There seems to be two conflicting forces atwork: on
the one hand,Cl only has2l − 1 = k points so even thoughfl is forced to be large on these there may
still be plenty of room to make it small elsewhere. But on the other hand, sinceCl is a good code the
elements ofCl are very pread out (their pairwise Hamming distances are roughly k/2), which together
with the submodularity condition appears to forcefl to be large.

In this section we studyfl for small l, obtaining our hardness results. As discussed towards the
end of the section, there are indications that the inapproximability given byfl actually becomes worse
for largel and that our results are the best possible for this family of functions, but we do not yet know
whether these indications are correct.

5.1 Symmetric Functions

We start with the symmetric functions, as these are somewhatnicer than the asymmetric ones in that
their symmetry turn out to causes(f sym

l ) to be achieved byp = 1/2, i.e.,s(f sym
l ) simply equals the

average off sym
l . Table 1 gives a summary of the completeness, soundness, andinapproximability

obtained byf sym
l for l ∈ {3, 4, 5}. We now describe these functions in a more detail.

As a warmup, let us first describe the quite simple functionf sym
4 : 2[8] → [0, 1] (we leave the even
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l c s(f sym
l ) Inapproximabilitys/c

3 3/4 5/8 5/6 < 0.8334

4 7/8 43/64 43/56 < 0.7679

5 15/16 709/1024 709/960 < 0.7386

Table 1: Behaviour off sym
l for small l.

|S|

e(S) 0 1 2 3 4 5 6 7 8

0 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

1 – – – – – 19/32 22/32 24/32 26/32

2 – – – – – – 20/32 23/32 24/32

Table 2: Description off sym
5 (S) as a function of|S| ande(S) for |S| ≤ 8.

easier functionf sym
3 to the interested reader). Its definition is as follows:

f
sym
4 (S) =



























f(S) if |S| > 4

|S|/4 if |S| < 4

1 if |S| = 4 andS is in Csym
4

3/4 otherwise

.

That f sym
4 (S) is submodular is easily verified. It is also easy to check thatLemma 2.1 applies and

therefore we have thats(f sym
4 ) = s1/2(f

sym
4 ), which is straightforward to compute (note that|Csym

4 | =
14):

s1/2(f
sym
4 ) = 2−8

(

2

(

8

1

)

·
1

4
+ 2

(

8

2

)

·
2

4
+ 2

(

8

3

)

·
3

4
+ 14 · 1 +

((

8

4

)

− 14

)

·
3

4

)

=
43

64

Let us then move on to the next functionf sym
5 : 2[16] → [0, 1], giving an inapproximability of

0.7386. It turns out that one can takef sym
5 (S) to be a function of two simple properties ofS, namely

its cardinality|S|, and the distance fromS to Csym
5 . Specifically, for|S| ≤ 8 let us define thenumber

of errors e(S) as the minimum number of elements that must be removed fromS to get a subset of
some set inCsym

5 . Formally
e(S) = min

C∈C
sym
5

|S \ C|,

or equivalently,d(S, Csym
5 ) = 8 − |S| + 2e(S), whered(S, Csym

5 ) is the Hamming distance from the
binary string corresponding toS to the nearest element inCsym

5 . Table 2 gives the values off sym
5

for all |S| ≤ 8, and for|S| > 8 the value off sym
5 (S) is given byf sym

5 (S). Note that, for sets with
e(S) = 0, i.e., no errors,f sym

5 (S) is simply|S|/8, which is what one would expect. However, for sets
with errors,f sym

5 (S) has a more complicated behaviour and it is far from clear how this generalizes to
largerl.

Veryfing thatf sym
5 is indeed submodular is not as straightforward as withf sym

4 . We have not
attempted to construct a shorter proof of this than simply checking condition (1) for everyS, i andj, a

9



l c s(fl) Inapproximabilitys/c

3 7/8 < 0.6275 < 0.7172

4 15/16 < 0.6508 < 0.6942

Table 3: Behaviour offl for small l.

task which is of course best suited for a computer program (which is straightforward to write and runs
in a few seconds).

A computer program is also the best way to compute the soundnesss(f sym
5 ). It is almost obvious

from inspection of Table 2 thatf sym
5 satisfies the monotonicity condition of Lemma 2.1 (the only

possible source of failure is that the table only implies that the average off sym
5 on sets of size6

is between20/32 and24/32, and that the average on sets of size7 is between23/32 and28/32).
It turns out that the conditions of Lemma 2.1 are indeed satisfied and that the average off sym

5 is
s1/2(f

sym
5 ) = 709/1024.

Concluding this discussion onf sym
l , it is tempting to speculate on its behaviour for largerl. We

have made a computation off sym
6 : 2[32] → [0, 1], under the assumption thatf sym

6 (S) only depends on
|S| and the multiset of distances to every point of the support ofCsym

6 . Under this assumption, our com-
putations indicate thats(f sym

6 ) ≈ 0.7031 giving an inapproximatibility ofs(f sym
6 )/(31/32) ≈ 0.7258,

improving uponf sym
5 . However, as these computations took a few days they are quite cumbersome to

verify (and we have not even made a careful verification of them ourselves) and therefore we do not
claim this stronger hardness as a theorem.

5.2 Asymmetric Functions

We now return our focus to the asymmetric case. Table 3 describes the hardness ratios obtained from
fl for the casesl = 3 andl = 4.

We begin with the description of the functionf3 : 2[7] → [0, 1]. Similarly to the definitione(S)
used in the description off sym

5 , let us say thatS ⊆ [7] has no errorsif it is a subset or a superset of
someC ∈ C3. In other words, if|S| < 4 it has no errors if it can be transformed to a set inC3 by
adding some elements, and if|S| > 4 it is has no errors if it can be transformed to a codeword by
removing some elements. The functionf3 is as follows:

f3(S) =



























|S|/4 if |S| ≤ 4 and has no errors

(7− |S|)/3 if |S| > 4 and has no errors

11/24 if |S| = 3 and has errors

17/24 if |S| = 4 and has errors

As with f
sym
5 , it is not completely obvious thatf3 satisfies the submodularity condition and there are

a few cases to verify, best left to a computer program.
The average off3 is 637/1024 ≈ 0.622. However, sincef3 takes on its largest values at sets of

size(k + 1)/2 = 4, thep-biased average is larger than this for somep > 1/2. It turns out thats(f4)
is obtained by thep-biased distribution forp ≈ 0.542404, giving s(f4) ≈ 0.627434 < 0.6275.

We are left with the description off4 : 2[15] → [0, 1], which is also the most complicated function
yet. One might hope thatf4 shares the simple structure of the previous functions – thatit depends only
on |S| and the distance ofS to the nearestC ∈ C4. However, the best function under this assumption

10



turns out to give a worse result thanf3. Instead,f4 depends on|S| and the multiset of distances to all
elements ofC4.

To describef4, define forS ⊆ [15] the multisetD(S) as the multiset of distances to all the15
strings inC4. For instance, forS = ∅, D(S) consists of the number8 repeated15 times, reflecting the
fact that all strings ofC4 have weight8, and forS ∈ C4 we have thatD(S) consists of the number8
repeated14 times, together with a single0, because the distance between any pair of strings inC4 is 8.

Table 4 describes the behaviour off4(S) as a function of|S| andD(S).3 In the tableD(S) is
described by a string of the formdm1

1 dm2
2 . . ., with d1 < d2 < . . . and

∑

mi = 15, indicating thatm1

strings ofC4 are at distanced1 from S, thatm2 strings are at distanced2, and so on. Thus, forS = ∅
the description ofD(S) is “815”, and forS ∈ C4 the description ofD(S) is “01814”.

The#S column of Table 4 gives the total number ofS ⊆ [15] having this particular value of
(|S|,D(S)), and the last column gives the actual value off4, multiplied by 448 to make all values
integers.

Again, checking thatf4 is submodular is a tedious task best suited for a computer. The average of
f4 is 9519345/(448 · 215) ≈ 0.6485, but, as withf3, s(f4) is somewhat larger than this. It turns out
that thep maximizingsp(f4) is roughlyp ≈ 0.526613, and thats(f4) ≈ 0.650754 < 0.6508.

Finally, we mention that as in the symmetric case, we have made a computation of the next func-
tion, f5, again under the assumption that it depends only on the multiset of distances to the codewords.
Under this assumption it turns out thats1/2(f5) ≈ 0.6743, meaning that the inapproximability ob-
tained can not be better thans1/2(f5)/(31/32) ≈ 0.6961 which is worse than the inapproximability
obtained fromf4.
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[2] U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages 461–471, 2007.

[3] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM, 42:1115–
1145, 1995.

[4] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combi-
natorial optimization.Combinatorica, 1(2):169–197, 1981.

[5] S. Khot. On the Power of Unique 2-prover 1-round Games. InACM Symposium on Theory of
Computing (STOC), pages 767–775, 2002.

[6] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. OptimalInapproximability Results for MAX-
CUT and Other 2-variable CSPs?Siam Journal on Computing, 37:319–357, 2007.

3It is not necessary to include|S| as it is uniquely determined byD(S), but we find that explicitly including|S| makes
the table somewhat less obscure.

11



|S| D(S) #S 448 · f4(S)

0 815 1 0

1 7897 15 56

2 6488103 105 112

3 527696111 420 168

3 712113 35 138

4 42812121 105 224

4 416486104 840 224

4 6686102121 420 194

5 31517696111 840 280

5 55910 168 280

5 537694112 1680 250

5 527894131 315 220

6 216388103 420 336

6 426386104 1680 306

6 416586102121 2520 276

6 69106 280 276

6 6688141 105 216

7 117797 120 392

7 31527596111 2520 332

7 31711113 420 302

7 547594112 2520 302

7 537794131 840 272

7 714151 15 197

|S| D(S) #S 448 · f4(S)

8 01814 15 448

8 216487103 840 358

8 43811121 420 328

8 426485104 2520 328

8 416685102121 2520 298

8 6787141 120 253

9 117896 105 384

9 31527695111 2520 324

9 5699 280 324

9 547693112 1680 294

9 537893131 420 279

10 216488102 315 320

10 426486103 1680 290

10 416686101121 840 275

10 610105 168 260

11 31527696 420 256

11 31712112 105 256

11 547694111 840 241

12 43812 35 192

12 416686102 420 192

13 537894 105 128

14 6788 15 64

15 715 1 0

Table 4: Description off4

12



[7] L. Lovász. Submodular functions and convexity. In M. Grötschel, A. Bachem, and B. Korte,
editors,Mathematical Programming: The State of the Art - Bonn 1982, pages 235–257. Springer,
1983.

[8] G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. (russian).Prob-
lemy Peredǎci Informacii, 10(2):101–108, 1974.

[9] E. Mossel. Gaussian Bounds for Noise Correlation of Functions and Tight Analysis of Long
Codes. InIEEE Symposium on Foundations of Computer Science (FOCS), pages 156–165, 2008.

[10] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions–I.Mathematical Programming, 14:265–294, 1978.

[11] P. Raghavendra. Optimal Algorithms and Inapproximability Results For Every CSP? InACM
Symposium on Theory of Computing (STOC), 2008.

[12] L. Russo. An approximate zero-one law.Z. Wahrsch. Verw. Gebiete, 61(1):129–139, 1982.

[13] J. Vondrák. Submodular maximization by simulated annealing. Unpublished manuscript.
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A Proof of Theorem 3.2

To prove Theorem 3.2 we only give adictatorship testwith certain properties. The method of trans-
lating such a test into a hardness result under the UGC, goingback to the results of Khot et al. [6] for
MAX CUT is by now quite standard (see e.g. [11]).

A.1 Background: Polynomials, Quasirandomness and Correlation Bounds

To set up the dictatorship test we need to mention some background material.
A functionF : {0, 1}n → R is said to a be adictator if G(x) = xi for somei ∈ [n], i.e.,G simply

returns thei’th coordinate.
Now, any functionF : {0, 1}n → R can be written uniquely as a multilinear polynomialF (x) =

∑

S⊆[n] cSx
S for some set of coefficientscS , wherexS :=

∏

i∈S xi. With this view there is an obvious
extension of the domain ofF to [0, 1]n (or evenRn, but we shall only be interested in[0, 1]n).

We say that such a polynomial is(d, τ)-quasirandomif for every i ∈ [n] it holds that

∑

i∈S⊆[n]
|S|≤d

c2S ≤ τ.

Note that a dictator is in some sense the extreme opposite of a(d, τ)-quasirandom function as a dictator
is not even(1, τ)-quasirandom forτ < 1.

The main tool to obtain the soundness is the following “noisecorrelation bound” result of Mossel
[9] (Theorem 6.6 and Lemma 6.9), which we state here in a simplified form in order to keep the amount
of background necessary to a minimum.

13



Theorem A.1. Let ε > 0 and letµ be a balanced pairwise independent probability distribution over
{0, 1}k such thatµ(x) > 0 for everyx ∈ {0, 1}k . Then there existsd, τ > 0 such that the following
holds for alln.

LetF1, . . . , Fk : {0, 1}n → [0, 1] be(d, τ)-quasirandom functions. Then
∣

∣

∣

∣

∣

E
w1,...,wn

[

k
∏

i=1

Fi(w1,i, . . . , wn,i)

]

−
k
∏

i=1

E[Fi]

∣

∣

∣

∣

∣

≤ ε,

wherew1, . . . , wn ∈ {0, 1}k are drawn independently fromµ and wi,j ∈ {0, 1} denotes thejth
coordinate ofwi.

A.2 Dictatorship Test

We now give the dictatorship test, which by the standard conversion from dictatorship tests to hardness
implies Theorem 3.2. In the dictatorship test, the functionf : [0, 1]k → [0, 1] has the same role as the
function f : {0, 1}k → R

+ in Theorem 3.2 – as mentioned in the previous section we can take the
unique multilinear extension to make the domain the entire[0, 1]k , and the range can be taken to be
[0, 1] without loss of generality by simply scaling the function down.

Theorem A.2. For everyε there ared, τ > 0 such that the following holds. Letf : [0, 1]k → [0, 1]
andµ be a balanced pairwise independent distribution over{0, 1}k . There is a dictatorship testA,
which when run on a functionF : {0, 1}n → [0, 1] has the following properties:

1. A queriesF in k positionsx1, . . . , xk ∈ {0, 1}n and then accepts with probabilityf(F (x1), . . . , F (xk)).

2. If F is a dictator thenA accepts with probability at leastcµ(f)− ε.

3. If F is (d, τ)-quasirandom thenA accepts with probability at mosts(f) + ε.

Proof. Let µ′ be the distribution over{0, 1}k defined by

µ′ = (1− ε)µ + εU ,

whereU denotes the uniform distribution (in other words, a sample from µ′ is obtained by sampling
from µ with probability 1 − ε and otherwise, with probabilityε, taking a uniformly random element
of {0, 1}k). Note thatµ′ is also balanced pairwise independent, and more importantly it satisfies
µ′(x) > 0 for all x ∈ {0, 1}k which will allow us to apply Theorem A.1.

Now the testA is as follows:

• Pick a randomk-by-n matrixX over{0, 1} by letting each column be a sample fromµ′, inde-
pendently.

• Let x1, . . . , xk ∈ {0, 1}n be the rows ofX and letF (X) = (F (x1), . . . , F (xk)) ∈ {0, 1}k be
the values ofF on thesek points.

• Accept with probabilityf(F (X)).

The first property ofA is clear from its definition. For the completeness property,note that ifF is
a dictator thenF (X) ∈ {0, 1}k is just some column ofX and therefore distributed according toµ′, so
that

E[f(F (X))] = E
x∼µ′

[f(x)] = (1− ε) E
x∼µ

[f(x)] + ε E
x∼U

[f(x)] ≥ E
x∼µ

[f(x)]− ε = cµ(f)− ε.
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We now turn to the soundness property ofA. Let ε′ = ε/2k and letd andη be given by Theo-
rem A.1 with parameterε′ and the distributionµ′.

Now consider the multilinear expansionf(x) =
∑

S⊆[k] cSxS of f and let us analyze the expec-
tation off(F (X)) term by term. IfF is (d, τ)-quasirandom then by Theorem A.1 (lettingFi = F for
i ∈ S and lettingFi be the constant one function fori 6∈ S) we have

∣

∣

∣

∣

∣

E[
∏

i∈S

F (xi)]−
∏

i∈S

E[F ]

∣

∣

∣

∣

∣

≤ ε′.

Let p = E[F ] be the bias of the functionF . Then,
∏

i∈S E[F ] = p|S| equals the expectation ofxS

under thep-biased distribution. Summing over allS we obtain

E[f(F (X))] ≤
∑

S⊆[k]

cS E
x∼{0,1}k

(p)

[xS ] + 2kε′ = E
x∼{0,1}k

(p)

[f(x)] + ε = sp(f) + ε ≤ s(f) + ε,

giving the desired soundness property.
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