Abstract
We show that it is Unique Games-hard to approximate the maximum of a submodular function to within a factor 0.695, and that it is Unique Games-hard to approximate the maximum of a symmetric submodular function to within a factor 0.739. These results slightly improve previous results by Feige, Mirrokni and Vondrák (FOCS 2007) who showed that these problems are NP-hard to approximate to within 3/4 + ε ≈ 0.750 and 5/6 + ε ≈ 0.833, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Austrin, P.: Improved Inapproximability For Submodular Maximization. arXiv:1004.3777v1 [cs.CC] (2010)
Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Independence. Computational Complexity 18(2), 249–271 (2009)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007)
Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42, 1115–1145 (1995)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
Khot, S.: On the Power of Unique 2-prover 1-round Games. In: ACM Symposium on Theory of Computing (STOC), pp. 767–775 (2002)
Lovász, L.: Submodular functions and convexity. In: Grötschel, M., Bachem, A., Korte, B. (eds.) Mathematical Programming: The State of the Art - Bonn 1982, pp. 235–257. Springer, Heidelberg (1983)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming 14, 265–294 (1978)
Vondrák, J.: Submodular maximization by simulated annealing. Unpublished manuscript
Vondrák, J.: Submodularity in Combinatorial Optimization. PhD thesis, Charles University (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Austrin, P. (2010). Improved Inapproximability for Submodular Maximization. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-15369-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15368-6
Online ISBN: 978-3-642-15369-3
eBook Packages: Computer ScienceComputer Science (R0)