Skip to main content

Exploiting Concavity in Bimatrix Games: New Polynomially Tractable Subclasses

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6302))

Abstract

We study the fundamental problem of computing an arbitrary Nash equilibrium in bimatrix games. We start by proposing a novel characterization of the set of Nash equilibria, via a bijective map to the solution set of a (parameterized) quadratic program, whose feasible space is the (highly structured) set of correlated equilibria. We then proceed by proposing new subclasses of bimatrix games for which either an exact polynomial-time construction, or at least a FPTAS, is possible. In particular, we introduce the notion of mutual (quasi-) concavity of a bimatrix game, which assures (quasi-) convexity of our quadratic program, for at least one value of the parameter. For mutually concave bimatrix games, we provide a polynomial-time computation of a Nash equilibrium, based on the polynomial tractability of convex quadratic programming. For the mutually quasi-concave games, we provide (to our knowledge) the first FPTAS for the construction of a Nash equilibrium.

Of course, for these new polynomially tractable subclasses of bimatrix games to be useful, polynomial-time certificates are also necessary that will allow us to efficiently identify them. Towards this direction, we provide various characterizations of mutual concavity, which allow us to construct such a certificate. Interestingly, these characterizations also shed light to some structural properties of the bimatrix games satisfying mutual concavity. This subclass entirely contains the most popular subclass of polynomial-time solvable bimatrix games, namely, all the constant-sum games (rank− 0 games). It is though incomparable to the subclass of games with fixed rank [16]: Even rank− 1 games may not be mutually concave (eg, Prisoner’s dilemma), but on the other hand, there exist mutually concave games of arbitrary (even full) rank. Finally, we prove closeness of mutual concavity under (Nash equilibrium preserving) positive affine transformations of bimatrix games having the same scaling factor for both payoff matrices. For different scaling factors the property is not necessarily preserved.

This work has been partially supported by the ICT Programme of the EU under contract number FP7-215270 (FRONTS), and the ERC/StG Programme of the EU under the contract number 210743 (RIMACO).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding nash equilibria in planar win-lose games. Journal of Graph Algorithms and Applications 11(1), 309–319 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Applications 199, 339–355 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley & Sons, Inc., Chichester (1993)

    MATH  Google Scholar 

  4. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization, 7th edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  6. Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 261–272. IEEE Comp. Soc. Press, Los Alamitos (2006)

    Google Scholar 

  7. Chen, X., Deng, X., Teng, S.-H.: Computing nash equilibria: Approximation and smoothed complexity. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 603–612. IEEE Comp. Soc. Press, Los Alamitos (2006)

    Google Scholar 

  8. Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of 18th Int. Joint Conf. on Art. Intel. (IJCAI 2003), pp. 765–771. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  10. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009); Preliminary version in ACM STOC 2006

    Article  MATH  MathSciNet  Google Scholar 

  11. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equilibrium. In: Proc. of 8th ACM Conf. on El. Comm. (EC 2007), pp. 355–358 (2007)

    Google Scholar 

  13. Daskalakis, C., Papadimitriou, C.: Three player games are hard. Technical Report TR05-139, Electr. Coll. on Comp. Compl., ECCC (2005)

    Google Scholar 

  14. Even-Dar, E., Mansour, Y., Nadav, U.: On the convergence of regret minimization dynamics in concave games. In: Proc. of 41st ACM Symp. on Th. of Comp. (STOC 2009), pp. 523–532 (2009)

    Google Scholar 

  15. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games & Econ. Behavior 1, 80–93 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. Economic Theory 42, 157–173 (2010); Preliminary version appeared in ACM-SIAM SODA 2007

    Article  MATH  MathSciNet  Google Scholar 

  17. Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for approximating nash equilibria in bimatrix games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New polynomially tractable subclasses. In: Proc. of 13th W. on Appr. Alg. for Comb. Opt., APPROX’10 (2010), http://www.cs.uoi.gr/~kontog/pubs/approx10paper-full.pdf

  19. Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games. ALGORITHMICA 57, 653–667 (2010)

    Article  MATH  Google Scholar 

  20. Lemke, C., Howson, J.: Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12, 413–423 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of 4th ACM Conf. on El. Comm (EC  2003), pp. 36–41. Assoc. of Comp. Mach. (ACM), New York (2003)

    Google Scholar 

  22. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. Journal of Mathematical Analysis and Applications 9(3), 348–355 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morgenstern, O., von Neumann, J.: The Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    Google Scholar 

  24. Robinson, J.: An iterative method of solving a game. Annals of Mathematics 54, 296–301 (1951)

    Article  MathSciNet  Google Scholar 

  25. Rosen, J.: Existence and uniqueness of equilibrium points for concave n −person games. Econometrica 33(3), 520–534 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  26. Savani, R., von Stengel, B.: Exponentially many steps for finding a nash equilibrium in a bimatrix game. In: Proc. of 45th IEEE Symp. on Found. of Comp. Sci. (FOCS 2004), pp. 258–267 (2004)

    Google Scholar 

  27. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Tsaknakis, H., Spirakis, P.G.: A graph spectral approach for computing approximate nash equilibria. Technical report, Electronic Colloquium on Computational Complexity, Report No. 96 (2009)

    Google Scholar 

  29. Vavasis, S.: Approximation algorithms for indefinite quadratic programming. Mathematical Programming 57, 279–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kontogiannis, S., Spirakis, P. (2010). Exploiting Concavity in Bimatrix Games: New Polynomially Tractable Subclasses. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics