Skip to main content

Learning and Lower Bounds for AC 0 with Threshold Gates

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM 2010, APPROX 2010)

Abstract

In 2002 Jackson [JKS02] asked whether AC 0 circuits augmented with a threshold gate at the output can be efficiently learned from uniform random examples. We answer this question affirmatively by showing that such circuits have fairly strong Fourier concentration; hence the low-degree algorithm of Linial, Mansour and Nisan [LMN93] learns such circuits in sub-exponential time. Under a conjecture of Gotsman and Linial [GL94] which upper bounds the total influence of low-degree polynomial threshold functions, the running time is quasi-polynomial. Our results extend to AC 0 circuits augmented with a small super-constant number of threshold gates at arbitrary locations in the circuit. We also establish some new structural properties of AC 0 circuits augmented with threshold gates, which allow us to prove a range of separation results and lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspnes, J., Beigel, R., Furst, M., Rudich, S.: The expressive power of voting polynomials. Combinatorica 14(2), 1–14 (1994)

    Article  MathSciNet  Google Scholar 

  2. Beigel, R.: When do extra majority gates help? polylog(n) majority gates are equivalent to one. Computational Complexity 4, 314–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blais, E., O’Donnell, R., Wimmer, K.: Polynomial regression under arbitrary product distributions. In: COLT, pp. 193–204 (2008)

    Google Scholar 

  4. Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection. Journal of Computer & System Sciences 50(2), 191–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions. Journal of the ACM 43(4), 747–770 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan, A.: Testing for concise representations. In: FOCS, pp. 549–558 (2007)

    Google Scholar 

  7. Diakonikolas, I., Raghavendra, P., Servedio, R., Tan, L.-Y.: Average sensitivity and noise sensitivity of polynomial threshold functions (2009), http://arxiv.org/abs/0909.5011

  8. Furst, M., Jackson, J., Smith, S.: Improved learning of AC 0 functions. In: COLT, pp. 317–325 (1991)

    Google Scholar 

  9. Fortnow, L., Klivans, A.: Efficient learning algorithms yield circuit lower bounds. Journal of Computer & System Sciences 75(1), 27–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldmann, M., Håstad, J., Razborov, A.: Majority gates vs. general weighted threshold gates. Computational Complexity 2, 277–300 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gotsman, C., Linial, N.: Spectral properties of threshold functions. Combinatorica 14(1), 35–50 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldmann, M.: On the power of a threshold gate at the top. Information Processing Letters 63(6), 287–293 (1997)

    Article  MathSciNet  Google Scholar 

  13. Gopalan, P., Servedio, R.A.: Learning and Lower Bounds for AC 0 with Threshold Gates (2010), http://eccc.hpi-web.de/report/2010/074/

  14. Hansen, K.: Computing symmetric Boolean functions by circuits with few exact threshold gates. In: COCOON, pp. 448–458 (2007)

    Google Scholar 

  15. HÃ¥stad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Håstad, J.: A slight sharpening of LMN. Journal of Computer and System Sciences 63(3), 498–508 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harsha, P., Klivans, A., Meka, R.: Bounding the sensitivity of polynomial threshold functions (2009), http://arxiv.org/abs/0909.5175

  18. Jackson, J., Klivans, A., Servedio, R.: Learnability beyond AC 0. In: STOC, pp. 776–784 (2002)

    Google Scholar 

  19. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces. SIAM Journal on Computing 37(6), 1777–1805 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections and thresholds of halfspaces. Journal of Computer & System Sciences 68(4), 808–840 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klivans, A., O’Donnell, R., Servedio, R.: Learning geometric concepts via Gaussian surface area. In: FOCS, pp. 541–550 (2008)

    Google Scholar 

  22. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform and learnability. Journal of the ACM 40(3), 607–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mossel, E., O’Donnell, R., Servedio, R.: Learning functions of k relevant variables. Journal of Computer & System Sciences 69(3), 421–434 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. SIAM J. Comput. 37(3), 827–844 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Podolskii, V.: Personal communication (2010)

    Google Scholar 

  26. Sherstov, A.: The intersection of two halfspaces has high threshold degree. In: FOCS, pp. 343–362 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalan, P., Servedio, R.A. (2010). Learning and Lower Bounds for AC 0 with Threshold Gates. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics