Skip to main content

Abstract

We provide improved approximation algorithms for the min-max generalization problems considered by Du, Eppstein, Goodrich, and Lueker [1]. In min-max generalization problems, the input consists of data items with weights and a lower bound w lb, and the goal is to partition individual items into groups of weight at least w lb, while minimizing the maximum weight of a group. The rules of legal partitioning are specific to a problem. Du et al. consider several problems in this vein: (1) partitioning a graph into connected subgraphs, (2) partitioning unstructured data into arbitrary classes and (3) partitioning a 2-dimensional array into non-overlapping contiguous rectangles (subarrays) that satisfy the above size requirements.

We significantly improve approximation ratios for all the problems considered by Du et al., and provide additional motivation for these problems. Moreover, for the first problem, while Du et al. give approximation algorithms for specific graph families, namely, 3-connected and 4-connected planar graphs, no approximation algorithm that works for all graphs was known prior to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Du, W., Eppstein, D., Goodrich, M.T., Lueker, G.S.: On the approximability of geometric and geographic generalization and the min-max bin covering problem. In: WADS, pp. 242–253 (2009)

    Google Scholar 

  2. Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data mining: A survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms, Springer, Heidelberg (2008)

    Google Scholar 

  3. Garcia, Y.J., Lopez, M.A., Leutenegger, S.T.: A greedy algorithm for bulk loading r-trees. In: GIS 1998: Proceedings of the 1998 ACM Int. Symp. on Advances in Geographic Information Systems, pp. 163–164. ACM, New York (1998)

    Chapter  Google Scholar 

  4. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version of the one-dimensional bin packing problem. J. Algorithms 5(4), 502–525 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin covering. In: SODA, pp. 557–566 (2001)

    Google Scholar 

  6. Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1-3), 543–551 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bansal, N., Sviridenko, M.: The santa claus problem. In: STOC 2006: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 31–40. ACM, New York (2006)

    Chapter  Google Scholar 

  8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Manne, F.: Load Balancing in Parallel Sparse Matrix Computation. PhD thesis, University of Bergen, Norway (1993)

    Google Scholar 

  10. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: SODA, pp. 384–393 (1998)

    Google Scholar 

  11. Sharp, J.P.: Tiling multi-dimensional arrays. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 500–511. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Smith, A., Suri, S.: Rectangular tiling in multi-dimensional arrays. In: SODA, pp. 786–794 (1999)

    Google Scholar 

  13. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: Algorithms, complexity, and applications. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Improved approximation algorithms for rectangle tiling and packing. In: SODA, pp. 427–436 (2001)

    Google Scholar 

  15. Berman, P., DasGupta, B., Muthukrishnan, S.: Slice and dice: A simple, improved approximate tiling recipe. In: SODA, pp. 455–464 (2002)

    Google Scholar 

  16. Berman, P., DasGupta, B., Muthukrishnan, S.: Approximation algorithms for max-min tiling. J. Algorithms 47(2), 122–134 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(3), 259–271 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tutte, W.T.: A theorem on planar graphs. Trans. Amer. Math. Soc. 82, 99–116 (1956)

    MATH  MathSciNet  Google Scholar 

  19. Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, P., Raskhodnikova, S. (2010). Approximation Algorithms for Min-Max Generalization Problems. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics