Skip to main content

Abstract

Let (C 1,C1),(C 2,C2),...,(C m ,C m ) be a sequence of ordered pairs of 2CNF clauses chosen uniformly at random (with replacement) from the set of all \(4\binom{n}{2}\) clauses on n variables. Choosing exactly one clause from each pair defines a probability distribution over 2CNF formulas. The choice at each step must be made on-line, without backtracking, but may depend on the clauses chosen previously. We show that there exists an on-line choice algorithm in the above process which results \({\emph{whp}}\) in a satisfiable 2CNF formula as long as m/n ≤ (1000/999)1/4. This contrasts with the well-known fact that a random m-clause formula constructed without the choice of two clauses at each step is unsatisfiable \({\emph{whp}}\) whenever m/n > 1. Thus the choice algorithm is able to delay satisfiability of a random 2CNF formula beyond the classical satisfiability threshold. Choice processes of this kind in random structures are known as “Achlioptas processes.” This paper joins a series of previous results studying Achlioptas processes in different settings, such as delaying the appearance of a giant component or a Hamilton cycle in a random graph. In addition to the on-line setting above, we also consider an off-line version in which all m clause-pairs are presented in advance, and the algorithm chooses one clause from each pair with knowledge of all pairs. For the off-line setting, we show that the two-choice satisfiability threshold for k-SAT for any fixed k coincides with the standard satisfiability threshold for random 2k-SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apswall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Proc. Letters 8, 121–123 (1979)

    Article  Google Scholar 

  2. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. SIAM Journal on Computing 29(1), 180–200 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bohman, T., Frieze, A.: Avoiding a giant component. Random Structures & Algorithms 19(1), 75–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bohman, T., Frieze, A., Wormald, N.: Avoidance of a giant component in half the edge set of a random graph. Random Structures & Algorithms 25(4), 432–449 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bohman, T., Kim, J.H.: A phase transition for avoiding a giant component. Random Structures & Algorithms 28(2), 195–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bohman, T., Kravitz, D.: Creating a giant component. Combinatorics, Probability and Computing 15(4), 489–511 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Broder, A., Frieze, A., Upfal, E.: On the satisfiability and maximum satisfiability of random 3CNF formulas. In: Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 322–330 (1993)

    Google Scholar 

  8. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proc. 33rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 620–627 (1992)

    Google Scholar 

  9. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  10. Flaxman, A., Gamarnik, D., Sorkin, G.: Embracing the giant component. Random Structures & Algorithms 27(3), 277–289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedgut, E.: Sharp thresholds of graph properties and the k-SAT problem. Journal of the American Mathematical Society 12(4), 1017–1054 (1998)

    Article  MathSciNet  Google Scholar 

  12. Frieze, A., Wormald, N.: Random k-Sat: A tight threshold for moderately growing k. Combinatorica 25(3), 297–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goerdt, A.: A threshold for unsatisfiability. Journal of Computer and System Sciences 53(3), 469–486 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  15. Kravitz, D.: Random 2SAT does not depend on a giant. SIAM Journal on Discrete Mathematics 21(2), 408–422 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krivelevich, M., Loh, P., Sudakov, B.: Avoiding small subgraphs in Achlioptas processes. Random Structures & Algorithms 34(1), 165–195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krivelevich, M., Lubetzky, E., Sudakov, B.: Hamiltonicity thresholds in Achlioptas processes. In: Random Structures & Algorithms (to appear)

    Google Scholar 

  18. Spencer, J., Wormald, N.: Birth control for giants. Combinatorica 27(5), 587–628 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinclair, A., Vilenchik, D. (2010). Delaying Satisfiability for Random 2SAT. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics