Skip to main content

Abstract

We investigate the complexity of approximately counting stable matchings in the k-attribute model, where the preference lists are determined by dot products of “preference vectors” with “attribute vectors”, or by Euclidean distances between “preference points“ and “attribute points”. Irving and Leather [16] proved that counting the number of stable matchings in the general case is #P-complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order [16] and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS) [7]. It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibilty remains even in the restricted k-attribute setting when k ≥ 3 (dot products) or k ≥ 2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatnagar, N., Greenberg, S., Randall, D.: Sampling stable marriages: why spouse-swapping won’t work. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1223–1232 (2008)

    Google Scholar 

  2. Blair, C.: Every finite distributive lattice is a set of stable matchings. J. Combinatorial Theory (A) 37, 353–356 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bogomolnaia, A., Laslier, J.-F.: Euclidean preferences. J. Mathematical Economics 43, 87–98 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Canadian Resident Matching Service, http://www.carms.ca/eng/operations_algorithm_e.shtml

  5. Dalmau, V.: Linear datalog and bounded path duality of relational structures. Logical Methods in Computer Science 1, 1–32 (2005)

    Article  MathSciNet  Google Scholar 

  6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38, 471–500 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ge, Q., Štefankovič, D.: A graph polynomial for independent sets of bipartite graphs (2009), http://arxiv.org/abs/0911.4732

  10. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields. Combinatorics, Probability & Computing 16, 43–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferromagnetic Potts model (2010), http://arxiv.org/abs/1002.0986

  12. Goldberg, L.A., Jerrum, M.: Counterexample to rapid mixing of the GS Process, technical note (March 2010)

    Google Scholar 

  13. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J. Computing 16, 111–128 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algortihms. MIT Press, Boston (1989)

    Google Scholar 

  15. Gusfield, D., Irving, R.W., Leather, P., Saks, M.: Every finite distributive lattice is a set of stable matchings for a small stable marriage instance. J. Combinatorial Theory (A) 44, 304–309 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J. Computing 15, 655–667 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Threoretical Computer Science 43, 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knuth, D.E.: Stable Marriage and its Relation to Other Combinatorial Problems. American Mathematical Society, Providence (1997) (English edition)

    Google Scholar 

  19. McVitie, D., Wilson, L.: The stable marriage problem. Communications of the ACM 14, 486–490 (1971)

    Article  MathSciNet  Google Scholar 

  20. National Resident Matching Program, http://www.nrmp.org/res_match/about_res/algorithms.html

  21. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Computing 12, 777–788 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Scottish Foundation Allocation Scheme, http://www.nes.scot.nhs.uk/sfas/About/default.asp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chebolu, P., Goldberg, L.A., Martin, R. (2010). The Complexity of Approximately Counting Stable Matchings. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics