Abstract
We consider two-player stochastic games over real-time probabilistic processes where the winning objective is specified by a timed automaton. The goal of player □ is to play in such a way that the play (a timed word) is accepted by the timed automaton with probability one. Player \(\Diamond\) aims at the opposite. We prove that whenever player □ has a winning strategy, then she also has a strategy that can be specified by a timed automaton. The strategy automaton reads the history of a play, and the decisions taken by the strategy depend only on the region of the resulting configuration. We also give an exponential-time algorithm which computes a winning timed automaton strategy if it exists.
The authors are supported by the Alexander von Humboldt Foundation (T. Brázdil), the Institute for Theoretical Computer Science, project No. 1M0545 (J. Krčál), Brno Municipality (J. Křetínský), and the Czech Science Foundation, grants No. P202/10/1469 (A. Kučera) and No. 201/08/P459 (V. Řehák).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 115–136. Springer, Heidelberg (1991)
Alur, R., Courcoubetis, C., Dill, D.L.: Verifying automata specifications of probabilistic real-time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 28–44. Springer, Heidelberg (1992)
Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: Proceedings of LICS 2008, pp. 217–226. IEEE, Los Alamitos (2008)
Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. TCS 345, 2–26 (2005)
Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking of one-clock timed automata under probabilistic semantics. In: Proceedings of 5th Int. Conf. on Quantitative Evaluation of Systems (QEST 2008), pp. 55–64. IEEE, Los Alamitos (2008)
Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (2007)
Billingsley, P.: Probability and Measure. Wiley, Chichester (1995)
Bouyer, P., Forejt, V.: Reachability in stochastic timed games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 103–114. Springer, Heidelberg (2009)
Brázdil, T., Forejt, V., Krčál, J., Křetínský, J., Kučera, A.: Continuous-time stochastic games with time-bounded reachability. In: Proceedings of FST&TCS 2009. LIPIcs, vol. 4, pp. 61–72. Schloss Dagstuhl (2009)
Brázdil, T., Krčál, J., Křetínský, J., Kučera, A., Řehák, V.: Stochastic real-time games with qualitative timed automata objectives. Technical report FIMU-RS-2010-05, Faculty of Informatics, Masaryk University (2010)
Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: Proceedings of LICS 2009, pp. 309–318. IEEE, Los Alamitos (2009)
Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Stochastic Models 3(3), 409–438 (1987)
Maitra, A., Sudderth, W.: Finitely additive stochastic games with Borel measurable payoffs. Int. Jour. of Game Theory 27, 257–267 (1998)
Martin, D.A.: The determinacy of Blackwell games. Journal of Symbolic Logic 63(4), 1565–1581 (1998)
Neuhäußer, M., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)
Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)
Rabe, M., Schewe, S.: Optimal time-abstract schedulers for CTMDPs and Markov games. In: Eighth Workshop on Quantitative Aspects of Programming Languages (2010)
Ross, S.M.: Stochastic Processes. Wiley, Chichester (1996)
Schassberger, R.: Insensitivity of steady-state distributions of generalized semi-Markov processes. Advances in Applied Probability 10, 836–851 (1978)
Whitt, W.: Continuity of generalized semi-Markov processes. Mathematics of Operations Research 5(4), 494–501 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brázdil, T., Krčál, J., Křetínský, J., Kučera, A., Řehák, V. (2010). Stochastic Real-Time Games with Qualitative Timed Automata Objectives. In: Gastin, P., Laroussinie, F. (eds) CONCUR 2010 - Concurrency Theory. CONCUR 2010. Lecture Notes in Computer Science, vol 6269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15375-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15375-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15374-7
Online ISBN: 978-3-642-15375-4
eBook Packages: Computer ScienceComputer Science (R0)