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Abstract

We consider two-player stochastic games over real-time probabilistic processes where

the winning objective is specified by a timed automaton. The goal of player � is to play in

such a way that the play (a timed word) is accepted by the timed automaton with probability

one. Player ^ aims at the opposite. We prove that whenever player � has a winning strat-

egy, then she also has a strategy that can be specified by a timed automaton. The strategy

automaton reads the history of a play, and the decisions taken by the strategy depend only on

the region of the resulting configuration. We also give an exponential-time algorithm which

computes a winning timed automaton strategy if it exists.

1 Introduction

In this paper, we study stochastic real-time games (SRTGs) which are obtained as a natural

game-theoretic extension of generalized semi-Markov processes (GSMP) [1, 2, 3] or real-time

∗The authors are supported by the Alexander von Humboldt Foundation (T. Brázdil), the Institute for Theoret-

ical Computer Science, project No. 1M0545 (J. Krčál), Brno Municipality (J. Křetínský), and the Czech Science

Foundation, grants No. P202/10/1469 (A. Kučera), No. 201/08/P459 (V. Řehák), and No. 102/09/H042 (J. Krčál).
†On leave at TU München, Boltzmannstr. 3, Garching, Germany.
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probabilistic processes (RTP) [4]. Intuitively, all of these formalisms model systems which re-

act to certain events, such as message receipts, subsystem failures, timeouts, etc. A common

characteristic of all events is that they are delayed (it takes some time before an initiated event

actually occurs) and concurrent (there can be several previously initiated events that are currently

awaited). For example, if two messages e and e ′ are sent, it takes some (random) time before

they arrive, and one can specify, or approximate, the densities fe, fe ′ of their arrival times. When

e arrives (say, after 20 time units), the system reacts to this event by changing its state, and awaits

e ′ in a new state. The arrival time of e ′ in the new state is measured from zero again, and its

density fe ′|20 is obtained from fe ′ by incorporating the condition that e ′ is delayed for at least 20

time units. That is, fe ′|20(x) = fe(x + 20)/
∫∞
20

fe(y) dy. Note that if the delays of all events are

exponentially distributed, then fe = fe|b for every b ∈ R≥0, and thus we obtain continuous-time

Markov chains (see, e.g., [5]) and continuous-time stochastic games [6, 7] as restricted forms of

RTPs and SRTGs, respectively.

Intuitively, a SRTG is a finite graph (see Fig. 1) with three types of nodes—states (drawn as

large circles), controls, where each control can be either internal or adversarial (drawn as boxes

and diamonds, respectively), and actions (drawn as small filled circles). In each state s, there

is a finite subset E(s) of events scheduled in s (the events scheduled in s are those which are

“awaited” in a given state; the other events are disabled. Each state s can react to every event of

E(s) by entering a designated control c, where player � or player^ chooses some of the available

actions. Each action is associated with a fixed probability distribution over states. In general,

both players can use randomized strategies, which means that they do not necessarily select just

a single action but a probability distribution over the available actions, which is multiplied with

the distributions associated to actions. Then, the next state is chosen randomly according to the

constructed probability distribution, and the play goes on. Whenever a new state s ′ is entered

from a previous state s along a play, each event scheduled in s ′ is assigned a new delay which is

chosen randomly according to the corresponding (conditional) density. The state s ′ then “reacts”

to the event with the least delay (under the assumptions adopted in this paper, the probability of

assigning the same delay to different events is zero).

Our contribution. In this work we consider SRTGs with deterministic timed automata

(DTA) objectives. Intuitively, a timed automaton “observes” a play of a given SRTG and checks

that certain timing constraints are satisfied. A simple example of a property that can be en-

coded by a DTA is “whenever a new request is generated, it is either serviced within the next

10 time units, or the system eventually enters a safe state”. In this case, we want to setup the

internal controls so that the above property holds for almost all plays, no matter what deci-
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Figure 1: An example of a stochastic real-time game

sions are taken in adversarial controls. Hence, the aim of player � is to maximize the proba-

bility that a play is accepted by a given timed automaton, while player ^ aims at the opposite.

By applying the result of [8], we obtain that SRTGs with DTA objectives have a value, i.e.,

supσ infπ Pσ,π = infπ supσ Pσ,π, where σ and π range over all strategies of player � and player ^,

and Pσ,π is the probability of all plays satisfying a given DTA objective. This immediately raises

the question whether the players have optimal strategies which guarantee the equilibrium value

against every strategy of the opponent. We show that the answer is negative. Then, we con-

centrate on the qualitative variant of the problem, which is perhaps most interesting from the

practical point of view. An almost-sure winning strategy for player � is a strategy such that

for every strategy of player ^, the probability of all plays satisfying a given DTA objective is

equal to one. The main result of this paper is the following: We show that if player � has some

almost-sure winning strategy, then she also has a DTA almost-sure winning strategy, which can

be encoded by a deterministic timed automaton A constructable in exponential time. The au-

tomatonA reads the history of a play, and the decision taken by the corresponding DTA strategy

depends only on the region of the resulting configuration entered byA.

Our constructions and proofs are combinations of standard techniques (used for timed au-

tomata and finite-state games) and some new non-trivial observations that are specific for the

considered model of SRTGs. We also adapt some ideas presented in [4] (in particular, we use the

concept of δ-separation).

Related work. Continuous-time (semi)Markov chains are a classical and deeply studied

model with a mature mathematical theory (see, e.g., [5, 9]). Continuous-time Markov decision

processes (CTMDPs) [10, 11, 12] combine probabilistic and non-deterministic choice, but all

events are required to be exponentially distributed. Two player games over continuous-time

Markov chains were considered only recently [6, 7]. Timed automata [13] were originally in-

troduced as a non-stochastic model with time. Probabilistic semantics of timed automata was
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proposed in [14, 15], and a more general model of stochastic games over timed automata was

considered in [16]. In this paper we build mainly on the previous work about GSMPs [1, 2, 3]

and RTPs [4, 17] and interpret timed automata as a model-independent specification language

which can express important properties of timed systems. This view is adopted also in [18]

where continuous-time Markov chains are checked against timed-automata specifications.

Let us note that our technical treatment of events is somewhat different from the one used

for GSMPs and RTPs. Intuitively, in GSMPs (and RTPs), each event is assigned its delay only

when it is newly scheduled, and this delay is just updated when moving from state to state

(by subtracting the elapsed time) until the event happens or it is disabled. For example, if two

messages e and e ′ are sent, both of them are assigned randomly chosen delays de and de ′ . The

smaller of the two delays (say de) triggers a transition to the next state, where the delay of

de ′ is updated by subtracting de. Since the current delays of all events are explicitly recorded

in the state-space of GSMPs and RTPs, this formalism cannot be directly extended to perfect-

information games (the players would “see” the delays assigned to events, i.e., they would know

what is going to happen in the future). In our model of SRTGs, we always assign a new random

delay to all events that are scheduled in a given control state, but we adjust the corresponding

densities (from a “probabilistic” point of view, this approach is equivalent to the one used for

GSMPs and RTPs).

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, real numbers, positive real

numbers, and non-negative real numbers are denoted by N, N0, R, R>0, and R≥0, respectively.

Let A be a finite or countably infinite set. A probability distribution on A is a function

f : A → R≥0 such that
∑

a∈A f (a) = 1. We say that f is rational if f (a) is rational for every

a ∈ A. The set of all distributions on A is denoted byD(A). A σ-field over a setΩ is a set F ⊆ 2Ω

that includes Ω and is closed under complement and countable union. A measurable space is a

pair (Ω,F ) where Ω is a set called sample space and F is a σ-field over Ω whose elements

are called measurable sets. A probability measure over a measurable space (Ω,F ) is a function

P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint elements of F ,

P(
⋃

i∈I Xi) =
∑

i∈I P(Xi), and moreover P(Ω) = 1. A probability space is a triple (Ω,F ,P),

where (Ω,F ) is a measurable space and P is a probability measure over (Ω,F ). We say that a

property A ⊆ Ω holds for almost all elements of a measurable set Y if P(Y) > 0, A∩ Y ∈ F , and

P(A | Y) = 1.
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Let us note that all of the integrals used in this paper should be understood as Lebesgue

integrals, although we use Riemann-like notation.

2.1 Stochastic real-time games

Let E be a finite set of events, which are independent of each other. To every e ∈ E we associate

its lower bound `e ∈ N0, upper bound ue ∈ N ∪ {∞}, and a density function fe : R → R which

is positive on (`e, ue) such that
∫ue

`e
fe(x) dx = 1. Further, for every b ∈ R≥0 we also define the

conditional density function fe|b : R→ R as follows:

fe|b(x) =
fe(x + b)[∫ue

b fe(y) dy
]
,0

Here [·],0 : R → R is a function which for a given x returns x if x , 0, and 1 otherwise. The

function fe defines the density of delaying the event e, i.e., for every time t ∈ R≥0, the probability

of delaying e for at most t is equal to
∫t
0

fe(x) dx. Note that the integral
∫t
0

fe|b(x) dx is equal to

the conditional probability of delaying e for at most b + t under the condition that e is delayed

for at least b. Since all events are mutually independent, for every subset E ′ ⊆ E we have that

the conditional probability of delaying all events in E ′ for at least b + t under the condition that

all events in E ′ are delayed for at least b is equal to
∏

e∈E ′
∫∞

t fe|b(x) dx.

Definition 2.1. A stochastic real-time game (SRTG) is a tuple G = (S , E,C�,C^,Act, F, A, µ0)

where S is a finite set of states, E : S → 2E assigns to each s ∈ S the set of events scheduled to

occur in s, C� and C^ are finite disjoint sets of controls of player � and player ^, Act ⊆ D(S ) is

a finite set of actions, F is a flow function which to every pair (s, e), where s ∈ S and e ∈ E(s),

assigns a control of C� ∪C^, A : C� ∪C^ → 2Act assigns to each control c a non-empty finite set

of actions enabled at c, and µ0 ∈ D(S ) is an initial distribution.

A stamp is an element (s, t, e) of S ×R>0×E where e ∈ E(s). A (computational) history of G is a

finite sequence h = (s0, t0, e0) · · · (sn, tn, en) of stamps. Intuitively, ti is the time spent in si while

waiting for some of the events scheduled in si, and ei is the event that triggered a transition to the

next state si+1. A strategy of player �, where � ∈ {�,^}, is a measurable function which to every

history (s0, t0, e0) · · · (sn, tn, en) such that F(sn, en) = c ∈ C� assigns a probability distribution

over the set A(c) of actions that are enabled at c. The set of all strategies of player � and

player ^ are denoted by Σ and Π , respectively.

Let (σ, π) ∈ Σ × Π . The corresponding play of G is initiated in some s0 ∈ S (with prob-

ability µ0(s0)). Then, each event e ∈ E(s0) is assigned a randomly chosen delay d0e ∈ R>0
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according to the density fe (note that fe = fe|0). Let t0 = min{d0e | e ∈ E(s0)} be the minimal

delay of all events scheduled in s0, and let trigger0 be the set of all e ∈ E(s0) such that d0e = t0.

The event e0 which “triggers” a transition to the next state is the least element of trigger0 w.r.t.

some fixed linear ordering ≤ (note that the probability of assigning the same delay to different

events is zero, and hence the choice of ≤ is irrelevant; we need this ordering just to make our

semantics well defined). The event e0 determines a control c = F(s0, e0), where the responsible

player makes a decision according to her strategy τ, i.e., selects a distribution τ(h) over A(c)

where h = (s0, t0, e0) is the current history. Hence, the next state s1 is chosen with probability∑
µ∈A(c) τ(h)(µ) · µ(s1). In s1, we assign a randomly chosen delay d1e to every e ∈ E(s1) ac-

cording to the conditional density fe|b, where b is determined as follows: If e was scheduled in

the previous state s0 and e , e0, then b = t0; otherwise b = 0. The event e1 is the least event

(w.r.t. ≤) with the minimal delay t1 = min{d1e | e ∈ E(s1)}. The next state s2 is chosen randomly

by combining the strategy of the respective player with the corresponding actions. In general,

after entering a state si, every e ∈ E(si) is assigned a randomly chosen delay di
e according to the

conditional density fe|b where b is the total waiting time for e accumulated in the history of the

play.

To formalize the intuition given above, we define a suitable probability space (Play,F ,Pσ,π
h
)

over the set Play of all infinite sequences of stamps, where h is a history of steps “performed

previously” (the technical convenience of h becomes apparent later in Section 3; the definition

given below is perhaps easier to understand in the special case when h is empty). For the rest of

this section, we fix a history h = (s0, t0, e0) · · · (sn, tn, en) where n ∈ N0 ∪ {−1}. If n = −1, then h

is empty. A template is a finite sequence of the form B = (sn+1, In+1, en+1) · · · (sn+m, In+m, en+m)

such that m ≥ 1, ei ∈ E(si), and Ii is an interval in R>0 for every n + 1 ≤ i ≤ n + m. Each such B

determines the corresponding cylinder Play(B) ⊆ Play consisting of all sequences of the form

(sn+1, tn+1, en+1) · · · (sn+m, tn+m, en+m) · · · where ti ∈ Ii for all n + 1 ≤ i ≤ n + m. The σ-field

F is the Borel σ-field generated by all cylinders. For each cylinder Play(B), the probability

P
σ,π
h
(Play(B)) is defined in the way described below. Then, Pσ,π

h
is extended to F (in the unique

way) by applying the extension theorem (see, e.g., [19]).

It remains to show how to define the probability Pσ,π
h
(Play(B)) of a given cylinder Play(B),

where B = (sn+1, In+1, en+1) · · · (sn+m, In+m, en+m). We put Pσ,π
h
(Play(B)) = Tn+1, where the

expression Ti is defined inductively for all n + 1 ≤ i ≤ n + m + 1 as follows:

Ti =


∫

Ii
Statei ·Wini · Ti+1 dti if n + 1 ≤ i ≤ n + m;

1 if i = n + m + 1.
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Observe that Tn+1 is an expression with m nested integrals. Further, note that when constructing

Ti+1, we already have t0, . . . , ti at our disposal (each ti is either fixed in h, or it is a variable used

in some of the preceding integrals).

The subterm Statei corresponds to the probability that si is chosen as the next state, assuming

that the current history is (s0, t0, e0) · · · (si−1, ti−1, ei−1). Hence, we define

• Staten+1 = µ0(sn+1) if h is empty, otherwise Staten+1 =
∑

µ∈A(c) τ(h)(µ) · µ(sn+1), where

c = F(sn, en), and τ is either σ or π, depending on whether c ∈ C� or c ∈ C^, respectively.

• Statei =
∑

µ∈A(c) τ(h
′)(µ) · µ(si), where n+1 < i ≤ n+m, c = F(si−1, ei−1), h ′ =

(s0, t0, e0) · · · (si−1, ti−1, ei−1), and τ is either σ or π, depending on whether c ∈ C� or

c ∈ C^, respectively.

The most complicated part is the definition of Wini which intuitively corresponds to the proba-

bility that the event ei “wins” the competition among the events scheduled in si.

In order to define Wini, we have to overcome a technical obstacle that the events scheduled

in si might have been scheduled also in the preceding states. For each e ∈ E(si), let K(e, i) be

the minimal index such that 0 ≤ K(e, i) ≤ i and for all K(e, i) ≤ j < i we have that e ∈ E(s j)

and e , e j. We put b(e, i) = tK(e,i) + · · ·+ ti−1. Intuitively, b(e, i) is the total waiting time for e

accumulated in the history of the play. Note that if K(e, i) = i, then the defining sum of b(e, i) is

empty and hence equal to zero. We put

Wini = fei|b(ei,i)(ti) ·
∏

e∈E(si)
e,ei

∫∞
ti

fe|b(e,i)(x) dx.

2.2 Deterministic timed automata

Let X be a finite set of clocks. A valuation is a function ν : X → R≥0. For every valuation ν

and every subset X ⊆ X of clocks, we use ν[X := ~0] to denote the unique valuation such that

ν[X := ~0](x) = 0 for all x ∈ X, and ν[X := ~0](x) = ν(x) for all x ∈ X r X. Further, for

every valuation ν and every δ ∈ R≥0, the symbol ν + δ denotes the unique valuation such that

(ν+ δ)(x) = ν(x) + δ for all x ∈ X.

A clock constraint (or guard) is a finite conjunction of basic constraints of the form x ./ c,

where x ∈ X, ./ ∈ {<,≤, >,≥}, and c ∈ N0. For every valuation ν and every clock constraint g we

have that ν either does or does not satisfy g, written ν |= g or ν 6|= g, respectively (the satisfaction

relation is defined in the expected way). Sometimes we slightly abuse our notation and identify

a guard g with the set of all valuations that satisfy g (for example, we write g∩ g ′). The set of all

guards over X is denoted by B(X).
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Definition 2.2. A deterministic timed automaton (DTA) is a tuple A = (Q, Σ,X,−→, q0,T ),
where Q is a nonempty finite set of locations, Σ is a finite alphabet, X is a finite set of clocks,

q0 ∈ Q is an initial location, T ⊆ Q is a set of target locations, and −→ ⊆ Q×Σ ×B(X)×2X×Q

is an edge relation such that for all q ∈ Q and a ∈ Σ we have the following:

1. the guards are deterministic, i.e., for all edges of the form (q, a, g1, X1, q1) and

(q, a, g2, X2, q2) such that g1 ∩ g2 , ∅ we have that g1 = g2, X1 = X2, and q1 = q2;

2. the guards are total, i.e., for all q ∈ Q, a ∈ Σ, and every valuation ν there is an edge

(q, a, g, X, q ′) such that ν |= g.

A configuration ofA is a pair (q, ν), where q ∈ Q and ν is a valuation. An infinite timed word is

an infinite sequence w = c0c1c2 · · · where each ci is either a letter of Σ or a positive real number

denoting a time stamp (note that letters and time stamps are not required to alternate in w). The

run of A on w is the unique infinite sequence (q0, ν0) c0 (q1, ν1) c1 · · · such that q0 is the initial

location ofA, ν0 = ~0, and for each i ∈ N0 we have that

• if ci is a time stamp t ∈ R≥0, then qi+1 = qi and νi+1 = νi + t,

• if ci is an input letter a ∈ Σ, then there is a unique edge (qi, a, g, X, q) such that νi |= g, and

we require that qi+1 = q and νi+1 = νi[X := ~0].

We say that w is accepted by A if the run of A on w visits a configuration (q, ν) where q ∈ T .

Without restrictions, we may assume that each q ∈ T is absorbing, i.e., all of the outgoing edges

of q lead back to q.

In this paper, we use DTA for two different purposes. Firstly, DTA are used as a generic

specification language for properties of timed systems. In this case, a given DTA is constructed

so that it accepts the set of all “correct” runs (timed words) of a given timed system. Formally,

for a fixed SRTG G with a set of states S , a finite set Ap of atomic propositions and a labeling

L : S → 2Ap, every play ρ = (s0, t0, e0)(s1, t1, e1) · · · of G determines a unique infinite timed

word Ap(ρ) = L(s0) t0 L(s1) t1 · · · . A DTA A with alphabet 2Ap then either accepts Ap(ρ) or

not. Intuitively, the automaton A encodes some desirable property of plays, and the aim of

player � and player ^ is to maximize and minimize the probability of all plays accepted by A,

respectively. We denote Play(A) ⊆ Play the set of all plays ρ such that Ap(ρ) is accepted byA.

Note that the DTA does not read any information about the events that occurred. However, one

can easily encode the information about the last event into the subsequent state by considering

copies se of each state s for every event e.
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Secondly, we use DTA to encode strategies in stochastic real-time games. Here, the con-

structed DTA “observes” the history of a play, and the decisions taken by the corresponding

strategy depend only on the resulting configuration (q, ν). Actually, we require that the deci-

sion depends only on the region of (q, ν) (see [13] or Section 3.1), which makes DTA strategies

finitely representable. Formally, every history h = (s0, t0, e0) · · · (sn, tn, en) of G can be seen as

a (finite) timed word s0 t0 e0 · · · sn tn en, where the states and events are seen as letters, and the

delays are seen as time stamps. We define DTA strategies as follows.

Definition 2.3. A DTA strategy is a strategy τ such that there is a DTA A with alphabet S ∪ E

satisfying the following: for every history h we have that τ(h) is a rational distribution which

depends only on the region of (q, ν), where (q, ν) is the configuration entered byA after reading

the word h.

3 Results

For the rest of the paper, we fix an SRTG G = (S , E,C�,C^,Act, F, A, µ0), a finite set Ap of

atomic propositions, a labeling L : S → 2Ap, and a DTAA = (Q, 2Ap,X,−→, q0,T ).
As observed in [8], the determinacy result for Blackwell games [20] implies determinacy of

a large class of stochastic games. This abstract class includes the games studied in this paper,

and thus we obtain the following:

Proposition 3.1. Let h be a history of G. Then

sup
σ∈Σ

inf
π∈Π
P
σ,π
h
(Play(A)) = inf

π∈Π
sup
σ∈Σ

P
σ,π
h
(Play(A))

The value of G (with respect to h), denoted by valh, is defined by the above equality.

The existence of valh implies the existence of ε-optimal strategies for both players. However, note

that player � does not necessarily have an optimal strategy which would achieve the outcome

valh or better against every strategy of player ^, even if valh = 1 and C^ = ∅. A simple

counterexample is given in Fig. 2. Here fe is the uniform density on (0, 1) (i.e., fe(x) = 1 for

all x ∈ (0, 1)), Ap = {p0, p1}, L(s0) = {p0}, L(s1) = {p1}, and the only target location is gray.

All of the “missing” edges in the depicted DTA (which are needed to satisfy the requirement

that the guards are total) lead to a “garbage” location. The initial distribution µ0 assigns 1 to s0.

Now observe that valh = 1 (where h is the empty history), because for every ε > 0, player �

can “wait” in s0 until e is fired so that its delay is smaller than ε (this eventually happens with

probability 1), and then she moves to s1. The probability that e is assigned a delay at most 1− ε

9
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Figure 2: Player � does not have an optimal strategy.

in s1 is 1 − ε, and hence the constructed DFA accepts a play with probability 1 − ε. However,

player � has no optimal strategy.

In this paper we consider the existence and effective constructability of almost-sure winning

strategies for player �. Formally, a strategy σ ∈ Σ is almost-sure winning for a history h if for

every strategy π ∈ Π we have that Pσ,π
h
(Play(A)) = 1. We show the following:

Theorem 3.2. Let h be a history. If player � has (some) almost-sure winning strategy for h,

then she also has a DTA almost-sure winning strategy for h. The problem whether player � has

a (DTA) almost-sure winning strategy for h is solvable in exponential time. A DTA almost-sure

winning strategy is computable in exponential time if it exists.

A proof of Theorem 3.2 is not immediate and requires several steps. First, in Section 3.1 we

construct a product game GA of G and A and show that GA can be examined instead of G and

A. The existence of a DTA almost-sure winning strategy in GA is analyzed in Section 3.2.

Finally, in Section 3.3 we present an algorithm which computes a DTA almost-sure winning

strategy if it exists.

3.1 The product game

Intuitively, the product game of G and A, denoted by GA, is constructed by simulating the

execution of A on-the-fly in G. Waiting times for events and clock valuations are represented

explicitly in the states of GA, and hence the state-space of GA is uncountable. Still, GA is in

many aspects similar to G, and therefore we use a suggestive notation compatible with the one

used for G. To distinguish among the notions related to game G and product GA, we consistently

use the “p-” prefix. Hence, G has stamps, states, histories, etc., while GA has p-stamps, p-states,

p-histories, etc.

Let n = |E| + |X|. The clock values of A and the delays of currently scheduled events are

represented by a p-vector ξ ∈ Rn
≥0. The set of p-states is S × Q × Rn

≥0, and the sets of p-controls

of player � and player ^ are C� × Q × Rn
≥0 and C^ × Q × Rn

≥0, respectively.

A p-stamp is an element (s, q, ξ, t, e) of S × Q × Rn
≥0 × R>0 × E. The dynamics of GA is de-

termined as follows. First, we define a p-flow function FA, which to a given p-stamp (s, q, ξ, t, e)

10



assigns the p-control (c, q ′, ξ ′), where c = F(s, e), and q ′, ξ ′ are determined as follows. Let

(q, L(s), g, X, q ′) be the unique edge of A such that the guard g is satisfied by the clock valua-

tion stored in ξ + t. We put ξ ′ = (ξ +s t)[(e ∪ X) := ~0]. The operator “+s t” adds t to all clocks

stored in ξ and to all events scheduled in s, and (e ∪ X) := ~0 resets all clocks of X to zero and

assigns zero delay to e. Second, we define the set of p-actions. For every p-control (c, q, ξ) and

an action a ∈ A(c), there is a corresponding p-action which to a given p-state (s ′, q, ξ ′), where

ξ ′ = ξ[(E \ E(s ′)) := ~0], assigns the probability a(s ′).

Now we define p-histories and p-plays as sequences of p-stamps. In the game G we allowed

arbitrary sequences of stamps, whereas in the product game we need the automaton part of the

product to be consistent with the game part. We say that a p-stamp x0 = (s0, q0, ξ0, t0, e0) is

consistent with a p-stamp x1 = (s1, q1, ξ1, t1, e1) if the image of x0 under the p-flow function is a

p-control (c, q1, ξ ′) such that ξ1 = ξ ′[A := ~0] where A is the set of actions not enabled in s1.

A p-history is a finite sequence of p-stamps p = x0 · · · xn such that xi is consistent with xi+1

for all 0 ≤ i < n. A p-play is an infinite sequence of p-stamps x0x1 · · · where each finite prefix

x0 · · · xi is a p-history. Each p-history p = (s0, q0, ξ0, t0, e0) · · · (sn, qn, ξn, tn, en) can be mapped to

a unique history H(p) = (s0, t0, e0) · · · (sn, tn, en). Note that H is in fact a bijection, because each

history induces a unique finite execution of the DTAA and the consistency condition reflects this

unique execution. By the last p-control of a p-history p we denote the image of the last p-stamp

of p under the p-flow function.

3.1.1 Probability space in the product game

Note that every pair of strategies (σ, π) ∈ Σ × Π defined for the original game G can also be

applied in the constructed product game GA (we just ignore the extra components of p-stamps).

By re-using the construction of Section 2.1, we define a probability space (Play,F ,Pσ,πp ) for

every pair of strategies (σ, π) ∈ Σ × Π and every p-history p. In the following, we first define

a probability measure on a semialgebra of p-cylinders. Then, the probability measure Pσ,πp is

extended to F by applying the extension theorem.

For the following, we fix a p-history p = (s0, q0, ξ0, t0, e0) · · · (sn, qn, ξn, tn, en) where n ∈

N0 ∪ {−1}. If n = −1, then p is empty. A p-template is a finite sequence of the form B =

(sn+1, qn+1, In+1, en+1) · · · (sn+m, qn+m, In+m, en+m) such that m ≥ 1, si is a state of S , qi is a location

of Q, Ii is an interval inR>0, and ei is an event of E(si) for every n+1 ≤ i ≤ n+m. Each p-template

B determines the corresponding p-cylinder Play(B) ⊆ Play consisting of all sequences of the

form (sn+1, qn+1, ξn+1, tn+1, en+1) · · · (sn+m, qn+m, ξn+m, tn+m, en+m) · · · where, for all n + 1 ≤ i ≤

n+m, it holds that ti ∈ Ii and ξi = ξ[(E\E(si+1)) := ~0] such that FA((si−1, qi−1, ξi−1, ti−1, ei−1)) =
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(c, q, ξ). For each p-cylinder Play(B), the probability measure Pσ,πp (Play(B)) closely follows the

definition of the probability measure from Section 2. We put Pσ,πp (Play(B)) = Tn+1, where the

expression Ti is defined inductively for all n + 1 ≤ i ≤ n + m + 1 as follows:

Ti =


∫

Ii
Statei · Locationi ·Wini · Ti+1 dti if n + 1 ≤ i ≤ n + m;

1 if i = n + m + 1

The expression Tn+1 contains m nested integrals. Note, that when constructing Ti+1, we already

have variables t0, . . . , ti available (each ti is either fixed in p, or it is introduced in some of the

preceding integrals).

The sub-terms Statei and Wini are the same as in Section 2. The sub-term Locationi reflects

whether the automaton moves to qi as the next location, assuming that the current p-history is

pi = (s0, q0, ξ0, t0, e0) · · · (si−1, qi−1, ξi−1, ti−1, ei−1). In the definition we use an indicator function

δ(q, q ′) defined as 1 if q = q ′ and 0 otherwise. We define

Locationi = δ(qi, q), where n < i < n+m and q is the location in the last p-control

of pi (q = q0 if i = n + 1 and p is empty).

Now, the probability measure Pσ,πp is defined to be a unique extension of Pσ,πp (Play(B)) on F

according to the extension theorem (see, e.g., [19]).

3.1.2 Region relation

Although the state-space of GA is uncountable, we can define a variant of region relation over

p-histories which has a finite index, and then work with finitely many regions.

For a given x ∈ R≥0, we use frac(x) to denote the fractional part of x, and int(x) to denote

the integral part of x. For x, y ∈ R≥0, we say that x and y agree on integral part if int(x) = int(y)

and neither or both x, y are integers. A relevant bound of a clock x is the largest constant c that

appears in all guards. A relevant bound of an event e is ue if ue < ∞, and `e otherwise. We say

that an element a ∈ E∪X is relevant for ξ if ξ(a) ≤ r where r is the relevant bound of a. Finally,

we put ξ1 ≈ ξ2 if

• for all relevant a ∈ E ∪ X we have that ξ1(a) and ξ2(a) agree on integral parts;

• for all relevant a, b ∈ E ∪ X we have that frac(ξ1(a)) ≤ frac(ξ1(b)) if and only if

frac(ξ2(a)) ≤ frac(ξ2(b)).

The equivalence classes of ≈ are called time areas. Now we can define the promised region

relation ∼ on p-histories. Let p1 and p2 be p-histories such that (c1, q1, ξ1) is the last p-control of
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p1 and (c2, q2, ξ2) is the last p-control of p2. We put p1 ∼ p2 iff c1 = c2, q1 = q2 and ξ1 ≈ ξ2. Note

that ∼ is an equivalence with a finite index. The equivalence classes of ∼ are called regions. A

target region is a region that contains such p-histories whose last p-controls have a target location

in the second component. The sets of all regions and target regions are denoted by R and RT ,

respectively.

Remark Let us note that the region construction described above can also be applied to config-

urations of timed automata, where it coincides with the standard region construction of [13].

This region construction is very useful as the region equivalence is a congruence with respect

to one-step reachability. This is formalized in the following lemma and proved in Appendix A.1.

We will often use this lemma in argumentation throughout the whole paper. In order to state the

lemma, we introduce the following notation. Let B = r1 · · · rn be a sequence of regions, by

Play(B) we denote the set of p-runs that follow this sequence in the first n steps.

Lemma 3.3. Let r and t be regions and p, p̄ be p-histories of the region r. For every action a

available in r, and every strategy σa and πa choosing a in r, we have that

Pσa,πa
p (Play(t)) > 0 iff P

σa,πa
p̄

(Play(t)) > 0.

3.1.3 Strategies in the product game

For every S ⊆ R, let Reach(S) be the set of all p-plays that visit a region of S (i.e., some prefix

of the p-play belongs to some r ∈ S). We say that a strategy σ ∈ Σ is almost-sure winning in GA
for a p-history p if for every π ∈ Π we have that Pσ,πp (Reach(RT )) = 1. The relationship between

almost-sure winning strategies in G and GA is formulated in the next proposition.

Proposition 3.4. Let σ ∈ Σ and p be a p-history. Then σ is almost-sure winning for p in GA iff

σ is almost-sure winning for H(p) in G.

Proof. The proposition is a direct consequence of following observation. Let C be the set of runs

that are accepted by the automaton A. One can easily see that for any pair of strategies σ and π

and any starting p-history p the following equation holds.

Pσ,πp (Reach(RT )) = P
σ,π

H(p)
(C)

Notice that in the definition of p-runs the valuation vectors ξ are defined to be consistent with

the previous p-history of the p-run. �
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Another observation about strategies in GA which is heavily used in the next sections concerns

regional strategies. Formally, a strategy τ ∈ Σ ∪Π is regional if for all p-histories p1 and p2 such

that p1 ∼ p2 we have that τ(p1) = τ(p2).

Proposition 3.5. Every regional strategy τ ∈ Σ ∪ Π is a DTA strategy.

Proof. Intuitively, we transform τ into a DTA AGA whose regions are in one-to-one correspon-

dence with the regions of GA. The automaton AGA reads a sequence of stamps of G and simulates

the behavior of GA. It has a special clock for every clock ofA and every event of E, and uses its

locations to store also the current state of the game.

Each regional strategy of GA determines a DTA strategy on automaton AGA . Recall that

for an automaton strategy we need an automaton over alphabet S ∪ E that reads the history

(s0t0e0) · · · (sntnen) where for each 0 ≤ i ≤ n the symbols si and ei are input letters and ti is a

time stamp. We define AGA = (((S ∪ C� ∪ C^) × Q) ∪ {qinit}, S ∪ E,E ∪ X, ↪→, qinit, ∅) where

↪→ = ↪→init ∪ ↪→event ∪ ↪→state. A guard that is satisfied for any valuation is denoted as tt. The

set of events not scheduled in s is denoted as N(s). The sets of edges are defined as follows

↪→init = { (qinit, s, tt, ∅, (s, q0)) | s ∈ S }

↪→event = { ((s, q), e, g, X ∪ {e} ∪ N(s), (c, q ′)) |

s ∈ S , e ∈ E, (q, L(e, s), g, X, q ′) ∈ −→, c = F(s, e)}

↪→state = { ((c, q), s, tt,N(s), (s, q)) | c ∈ (C� ∪C^), q ∈ Q, s ∈ S }

For each p-history pwhere x is the last p-stamp in p, it can be easily shown by induction on the

length of p that p is in the same region as the configuration of the automaton AGA after reading the

history H(p). Precisely, let FA(x) = (c, q, ξ), the automaton will be in a configuration ((c, q), ξ)

after reading the history H(p). Therefore, let σ be a strategy constant on regions. The strategy σ

is according to Definition 2.3 a DTA strategy, as well. �

Note that due to Proposition 3.5, every regional strategy can be effectively transformed into a

DTA strategy.

3.2 Almost-sure winning strategies

This section outlines the proof of our main result, namely that if player � can win almost-surely,

she can win almost-surely with a strategy that has a finite description.

Theorem 3.6. Let p be a p-history. If there is a strategy σ ∈ Σ which is almost-sure winning in

GA for p, then there is a DTA strategy σ∗ ∈ Σ which is almost-sure winning for p.
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Note that due to Proposition 3.5, it suffices to show that in GA there is a regional strategy that

is almost-sure winning for p.

Now we provide a quick overview of the whole proof. We start with an observation that an

almost-sure winning strategy must never reach with positive probability a bad region from that

it has zero probability of coming to the target. In other words, from any p-history in a reachable

region with positive probability it must have non-zero probability of winning. We call every

strategy that satisfies this condition a candidate strategy. The first part of the proof is to show

that there is a regional candidate strategy. But non-zero probability of winning is not sufficient, in

the second part of the proof we show that every regional candidate strategy wins with probability

1.

Now, we define the notion of candidate strategy.

Definition 3.7. Let σ be a strategy and p a p-history. We define S(σ, p) to be a set of regions

{r ∈ R | ∃ π ∈ Π : Pσ,πp (Reach(r)) > 0}. We write p ′ ∈ S(σ, p) to denote p ′ ∈
⋃

r∈S(σ,p) r.

A strategy σ ∈ Σ is a candidate for a p-history p if for every p-history p ′ ∈ S(σ, p) and, for

every π ∈ Π , we have that Pσ,π
p ′
(Reach(RT )) > 0.

The first part of the proof follows from the following proposition.

Proposition 3.8. Let p be a p-history. If there is a strategy σ ∈ Σ which is almost-sure winning

in GA for p, then there is a regional strategy σ∗ ∈ Σ candidate for p.

The formal proof is in Appendix A.2, here we provide a brief intuition only. Observe that

even σ may not be a candidate strategy for p. Indeed it may visit one part of a region with

positive probability and the other part with probability zero. In the visited part of the region it

must choose some good action (in order to win almost-surely) but in the non-visited part it may

choose a bad action. If this bad action leads to zero probability of winning, σ is not a candidate

strategy. Still, we have to mimic in some sense the behavior of the strategy σ by a regional

strategy. The key idea is to choose in a region only such action that is really used by σ, i.e. an

action that is in this region chosen by σ in runs with non-zero measure. It can be easily shown

that in every region reachable by σ there must be some good action that leads to reaching the

target (whereas other actions may postpone it). Since we need to find a regional strategy, we

need to show that this good action is actually good for the whole region. This is guaranteed by

Lemma 3.3 that may be regarded as a probabilistic variant of a classical result for reachability

in timed automata. In more detail, the lemma states that if we reach some region in one step

with positive probability, we reach it in one step with positive probability from any p-history

that is in the same region as our current p-history. In other words, regions form a congruence
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Figure 3: Intuition for δ-separated parts of regions.

with respect to forward reachability with positive probability. Therefore a good action achieves

positive probability of winning for the whole region.

Yet, positive probability of winning of strategy σ∗ guaranteed by Proposition 3.8 is not suffi-

cient, in the following we need to show that σ∗ wins almost-surely.

Remark If we consider the restricted case of one-player games with bounded intervals and

exponentially distributed unbounded events, we can already easily prove that σ∗ is almost-sure

winning using [13] as follows. Fixing σ∗ resolves all non-determinism and yields a system of the

type considered by [13]. Since we are guaranteed the positive probability of reaching the target,

we may apply Lemma 3 of [13]. However, in the setting of two-player games, we cannot use this

argument directly and some (non-trivial) changes are required.

To finish the proof of the main theorem for two-player games, we show that every regional

candidate strategy wins with probability 1. This proof is somewhat intricate. Note that we are

guaranteed that for every p-history in a positively reachable region, the probability of reaching

a target is positive. However, it can be arbitrarily small. Therefore, even if we pass through the

reachable regions infinitely often, it is not clear that we eventually reach a target almost surely

(because the probabilities of reaching the target may rapidly decrease as the play goes on). The

almost-sure winning would be guaranteed if the probabilities were bounded from below by a

positive constant. Such a bound does not exist in general, because the transition probabilities

between two regions may be arbitrarily small. These probabilities approach zero as the starting

p-history approaches the boundary of its region (i.e. as the fractional parts of two clocks approach

each other). The left part of Figure 3 shows the region graph of a system with two clocks and a

single state. There is also a single event, which is positive on (0, 1) and its associated clock is

not depicted. Now observe that if p comes closer and closer to the diagonal, the probability that

the (only) event happens in the region r1 is smaller and smaller. Similarly, if p comes closer and

closer to the bottom or right boundary of the region, respectively, the probability that the event

happens in the region r2 or r0 is smaller and smaller.
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In order to bound from below the probabilities of reaching the target, we use a technique

of Alur et al. [13]. We restrict ourselves to δ-separated parts of regions. As these parts are

reached from all the remaining parts of regions (as shown later), this restriction is without loss

of generality. The δ-separated parts of regions are depicted in gray in the right part of Figure 3.

Here, we are at least δ-away from the boundary of the region. Being away from the boundary

by a fixed δ then intuitively guarantees that any region that is reachable in one step is reachable

with a probability bounded from below. Indeed, the possible waiting time that lead us to that

region lies in an interval that has length at least δ, and the probability that an event happens

during an interval of this minimal size is bounded from below. It may happen that some p-

clocks synchronize and for some time have equal value (several clocks of the automaton may be

reset with the same transition or several events are newly scheduled with the same transition or

any combination of the previous two). The lower bound for one-step transitions is guaranteed

even for situations where some p-clocks are synchronized. Therefore, we can properly define

δ-separation as follows.

Definition 3.9. Let δ > 0. We say that a set D ⊆ R≥0 is δ-separated if for every x, y ∈ D

either frac(x) = frac(y) or |frac(x) − frac(y)| > δ. Further, we say that a p-history with the

last p-control (s, q, ξ) is δ-separated if the set {0} ∪ {ξ(a) | a ∈ E ∪ X, a is relevant for ξ} is

δ-separated.

The reason for considering only relevant p-clocks is purely technical (intuitively, a p-clock

is relevant if it has a sufficiently low value). We need to prove that a path of fixed length (to

the target) from a δ-separated p-history has probability bounded from below. This can be iter-

atively shown using the one-step bounds but we need to keep after each step some separation

(not necessarily δ-separation, δ ′-separation is sufficient for any fixed δ ≥ δ ′ > 0). Notice that

some constraints put on a p-history to be δ-separated are not necessary for bounding the one-step

probabilities but are necessary for guaranteeing the separation after each step. This reasoning

leads to the following result, proven in Appendix A.3.

Proposition 3.10. Let σ∗ be a regional strategy candidate for a p-history p. For every δ > 0 there

is ε > 0 and n ∈ N such that for every δ-separated p-history p ′ ∈ S(σ∗, p) and every strategy

π we have that Pσ
∗,π
p ′

(Reach≤n(RT )) > ε where Reach≤n(RT ) is the set of p-runs that reach the

target within n steps.

What happens if we after n steps leave the δ-separated parts of the regions? The proof is con-

cluded by the following observation that regardless of the decisions of the players a δ-separated

p-history is reached almost-surely.
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Proposition 3.11. There is δ > 0 such that for every regional strategy σ ∈ Σ and every π ∈ Π , a

δ-separated p-history is reached almost surely from every p-history p.

The proof is in Appendix A.4. This way, we repeat infinitely many times a chance to reach

the target with probability bounded from below. Therefore, we eventually reach it almost surely

whence Theorem 3.6 follows.

3.3 The algorithm

In this section, we show that the existence of a DTA almost-sure winning strategy is decidable in

exponential time, and we also show how to compute such a strategy if it exists. Due to Proposi-

tion 3.4, this problem can be equivalently considered in the setting of the product game GA. Due

to Proposition 3.5, an almost-sure winning DTA strategy can be constructed as a strategy that is

constant on every region of GA. We show that this problem can be further reduced to the prob-

lem of computing wining strategies in a finite stochastic game GA with reachability objectives

induced by the product game GA. First, we define the game GA and show how to compute it.

The complexity discussion of this reduction follows.

The product GA induces a game GA whose vertices are the regions of GA as follows.

Player �, where � ∈ {�,^}, plays in regions (c, q, [ξ]≈) 1 where c ∈ C�. In a region

r = (c, q, [ξ]≈), she chooses an arbitrary action a ∈ A(c) and this action a leads to a stochas-

tic vertex (r, a) = ((c, q, [ξ]≈), a). From this stochastic vertex there are transitions to all regions

r ′ = (c ′, q ′, [ξ ′]≈), such that r ′ is reachable from all p ∈ r in one step using action a with some

positive probability in the product GA. One of these probabilistic transitions is taken at random

according to the uniform distribution. From the next region the play continues in the same man-

ner. Player � tries to reach the set RT of target regions (which is the same as in the product game)

and player ^ tries to avoid it. We say that a strategy σ of player � is almost-sure winning for a

vertex v if she reaches RT almost surely when starting from v and playing according to σ.

At first glance, it might seem surprising that we set all probability distributions in GA as

uniform. Note that in different parts of a region r, the probabilities of moving to r ′ are different.

Due to Lemma 3.3 (see Appendix A.1), they are all positive or all zero. Since we are interested

only in qualitative reachability, this is sufficient for our purposes.

Moreover, note that since we are interested in non-zero probability behaviour, there are no

transitions to regions which are reachable only with zero probability (such as when an event

occurs at an integral time).
1Note that a region is a set of p-histories such that their last p-controls share the same control c, location q, and

equivalence class [ξ]≈. Hence, we can represent a region by a triple (c, q, [ξ]≈).
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Algorithm 1 Decide whether � has a DTA almost-sure winning strategy for h
input: events E, game G = (S , E,C�,C^,Act, F, A, µ0), DTA A = (Q, Σ,X,−→, q0,T ), and

the history h

output: YES + an almost-sure winning DTA strategy if it exists, or NO, otherwise

GA ← construct the discrete game by Algorithm 2 in Appendix B.2

W ← compute the set of almost-sure winning vertices in GA by [21]

σ← compute the optimal positional strategy in GA by [21]

v← compute the vertex in GA such that the run ofA over h results in the region v in GA

if v ∈ W then

return YES + the DTA strategy σ ′ induced by the regional strategy σ

else

return NO

The following proposition states the correctness of the reduction. Note that a regional strategy

for the product game GA induces a unique positional strategy for the game GA, and vice versa.

Indeed, this bijection between strategies is given by the bijection between regions of the product

game GA and the vertices of the game GA. Slightly abusing the notation, we thus consider the

strategies to be strategies in both games.

Proposition 3.12. Let G be a game and A be a deterministic timed automaton. For every p-

history p in a region r, a positional strategy is almost-sure winning for r inGA iff it is almost-sure

winning for p in GA,

The Algorithm 1 constructs the regions of the product GA and the induced game graph of the

game GA (see Appendix B.2). Since there are exponentially many regions (w.r.t. the number

of clocks and events), the size of GA is exponential in the size of G and A. Note that two-

player stochastic games with qualitative reachability objectives are easily solvable in polynomial

time [21]. Due to the bijection H (mapping p-histories to histories), Theorem 3.6, and Proposi-

tion 3.12, there is an almost-sure winning strategy for h in G with A iff there is an almost-sure

winning strategy for p = H−1(h) in GA iff there is an almost-sure winning strategy for r 3 p

in GA. Since all transformations of the strategies are trivially effective, we obtain the following

theorem and thus conclude the proof of Theorem 3.2.

Theorem 3.13. Let G be a SRTG, A be a deterministic timed automaton, and h be a history.

The problem whether player � has a (DTA) almost-sure winning strategy for h is solvable in time
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exponential in |G| and |A|. A DTA almost-sure winning strategy is computable in exponential

time if it exists.

4 Conclusions and Future Work

An interesting question is whether the positive results presented in this paper can be extended

to more general classes of objectives that can be encoded, e.g., by deterministic timed automata

with ω-regular acceptance conditions. Another open problem are algorithmic properties of ε-

optimal strategies in stochastic real-time games.
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A Deterministic timed automaton strategies - appendix
proofs

A.1 Proof of Lemma 3.3

Lemma 3.3. Let r and t be regions and p, p̄ be p-histories of the region r. For every action a

available in r, and every strategy σa and πa choosing a in r, we have that

Pσa,πa
p (Play(t)) > 0 iff P

σa,πa
p̄

(Play(t)) > 0.

Proof. Assume Pσa,πa
p (Play(t)) > 0, we must show that also Pσa,πa

p̄
(Play(t)) > 0. The other

direction follows from symmetry.

We first introduce a few definitions. Let u = (c, q, [ξ]≈) be a region (recall, that a region is a

set of p-histories such that their last p-controls have the same control c, location q and p-vector

in the same time area [ξ]≈). To simplify the argumentation, we assume w.l.o.g. that the flow

function F in the game G is injective. If it is not the case we can duplicate controls that have

multiple preimages (and give them the same actions). Hence, let the flow function F be injective.

Then for the region u with the control c there is a unique state s denoted as State(u) and a unique

event e ∈ E denoted as Event(u) such that F(s, e) = c.

Let r = (cr, qr, [ξr]≈) be the starting region and let (cr, qr, ξ) and (cr, qr, ξ̄) be the last p-

controls of p and p̄, respectively. Notice that ξ, ξ̄ ∈ [ξr]≈. We can understand the transition from

(cr, qr, ξ) and (cr, qr, ξ̄) to the target region t = (ct, qt, [ξt]≈) as a sequence of three sub-steps:

• taking the fixed action a, moving to the state s = State(t), resetting the events E \ E(s) not

scheduled in s, and resetting a set of clocks X by taking the edge (qr, L(s), g, X, qt) such

that g is satisfied for all p-vectors in [ξr]≈,

• waiting for time w and w̄, respectively, and

• triggering and resetting the event e = Event(t) and moving to the control ct.

As regards the action step, the probability of performing this step is a(s) for any p-vector in

[ξr]≈. It must hold that a(s) > 0. Let R = X ∪ (E \ E(s)) be the set of p-clocks reset in this step.

We denote ξa = ξ[R := ~0] and ξ̄a = ξ̄[R := ~0]. Because ξ ≈ ξ̄ then obviously ξa ≈ ξ̄a as well.

By the time step we must move to some p-vector ξb from which it is possible to move to the

target region by resetting the event e. Now comes a crucial observation that the time areas form

an equivalence with respect to the forward reachability by a time step, in some sense. Let [ξa]≈
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and [ξb]≈ be time areas and ξa, ξ̄a ∈ [ξa]≈ be p-vectors. The set of possible waiting times to reach

the time area [ξb]≈ from the p-vector ξa is denoted by X(ξa, [ξb]≈) = {t ∈ R>0 | ξa +s t ∈ [ξb]≈}.

It can be easily checked that the set X(ξa, [ξb]≈) has positive Lebesgue measure if and only if the

set X(ξ̄a, [ξb]≈) has positive Lebesgue measure.

Before the time step we have two p-vectors, ξa and ξ̄a in the same time area both “reached”

with positive probability. Let A be the set of p-vectors such that the event e is triggered and

the game moves to the desired control ct if and only if the time step ends up in a p-vector from

this set A. If we show that A is in fact a union of a set of time areas B, we are almost done.

Because Pσa,πa
p (Play(t)) > 0, for some time area [ξb]≈ ∈ B it must hold that the set X(ξa, [ξb]≈)

has positive Lebesgue measure. Due to the previous observation also the set X(ξ̄a, [ξb]≈) has

positive Lebesgue measure. Because the density function fe is positive on (le, ue) we have that

P
σa,πa
p̄

(Play(t)) > 0.

Now it remains to show that A is a union of time areas. First, the lower and upper bounds

of the events give us a set of time areas C where the event e can be triggered (thanks to the fact

that the events have their p-clocks in the p-vector). Second, the p-vectors from that we reach the

target time area [ξt]≈ by the reset of e form a set of whole time areas D. Clearly, A =
⋃
(C ∪ D)

is a union of time areas.

�

A.2 Proof of Proposition 3.8

Proposition 3.8. Let p be a p-history. If there is a strategy σ ∈ Σ which is almost-sure winning

in GA for p, then there is a regional strategy σ∗ ∈ Σ candidate for p.

We proceed in two steps:

• Firstly, we show that every regional strategy σ ′ that selects only the actions used “signif-

icantly” by σ, stays in S(σ, p) almost surely, i.e. S(σ ′, p) ⊆ S(σ, p). We firstly define

these significantly used actions. For every region r ∈ S(σ, p) and action a, let p-hist(r, a)

be the set of all p-histories ending in r where, moreover, σ assigns a positive probability

to a. We then denote by Ar the set of all a ∈ Act for which there is π ∈ Π such that

P
σ,π
p (p-hist(r, a)) > 0.

Claim A.1. Let σ ′ be a regional strategy that selects only the actions from Ar in every r ∈

S(σ, p). Then for all π ∈ Π and p ′ ∈ S(σ, p) it holds that Pσ
′,π
p ′

(Reach(R \ S(σ, p))) = 0.
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To see this, realize that from Lemma 3.3, we do not visit (with positive probability) any

other regions than we did with σ, when we use only the actions of Ar. Hence, we stay in

S(σ, p) almost surely. For details, see Appendix A.2.1.

• Secondly, we build a regional strategy σ∗ that can reach a target region with positive prob-

ability from every p-history of S(σ, p). We proceed in iterations. In each iteration we pick

some region and show that from this region there is a short path to the target. Furthermore,

we can guarantee a positive probability of following this path by a regional strategy. If we

change the behavior of the strategy outside this path it does not change the probability of

following it and thus reaching the target. Therefore, for the next iteration, we add to the set

of target regions the region we picked in the previous iteration and the regions on the short

path to the target (because from all these regions we can reach the set RT with positive

probability) and repeat the whole process until there are no more non-target regions.

For the first iteration, let the set of target regions X = RT . In each iteration:

– Let us fix a region r ∈ S(σ, p) such that r < X. Realize that then there is a p-history

p ′ ∈ r for which σ is almost-sure winning (since σ is almost-sure winning and for

every r ∈ S(σ, p) there is π ∈ Π such that r is visited with positive probability,

there must be a p-history p ′ ∈ r for which σ is almost-sure winning). In particular,

P
σ,π
p ′
(Reach(X)) > 0 for every π ∈ Π .

– We show how to transform σ into a regional strategy σ ′ such that Pσ
′,π
p ′

(Reach(X)) >

0.

Claim A.2. Let r be a region of S(σ, p), p ′ ∈ r a p-history, and X a set of target

regions such that RT ⊆ X and r < X. There is a regional strategy σ ′ that selects only

actions from Ar ′ in every r ′ ∈ S(σ, p) such that for every strategy π ∈ Π we have a

finite sequence B of regions ending in X satisfying Pσ
′,π
p ′

(Play(B)) > 0 and |B| ≤ |R|.

Here, we provide the intuition only, the full proof of this claim is in Appendix A.2.2.

We start with the intuition for one-player games, i.e., the situation when C^ = ∅.

Then there must be a sequence of regions B = r0 · · · rn visited on the way from p ′ to

a target, selecting some actions a0, . . . , an−1. We fix these actions for the respective

regions (if some region is visited several times, we fix the last action taken) and thus

obtain the desired regional strategy σ ′.

In the general case of two-player games, we have to consider a tree of regions and

actions instead of a single sequence, because every possible behaviour of the oppo-
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nent in the first n steps has to be taken into account. That is the reason for having for

every strategy of the opponent a different sequence of regions B.

– We have the positive probability guaranteed only for the p-history p ′, we need it for

the whole region r and all the regions in the sequence to the target. Let us fix a

strategy π of the opponent. There is a sequence of regions B = r0 · · · rn ending in

X such that Pσ
′,π
p ′

(Play(B)) > 0. We want to prove that for any 0 ≤ i < n and any

p-history p ′′ in the region ri the probability to reach the set X is positive. We show

by induction on i. As regards the base of the induction, the probability to move from

the region rn−1 to the region rn is positive or zero for all p-histories in rn−1 due to

Lemma 3.3. If it were zero then clearly Pσ
′,π
p ′

(Play(B)) = 0. Hence, for all p ′′ ∈ rn−1

it holds that Pσ
′,π
p ′

(Reach(X)) > 0. Now, assume the statement holds for i + 1, we

show it for i. Let p ′′ ∈ ri. The probability to reach X from p ′′ is at least the probability

to move to ri+1 and reach the target from there. The probability to move to ri+1 must

be positive for some p-history in ri because Pσ
′,π
p ′

(Play(B)) > 0. Hence, it is positive

also for p ′′ due to Lemma 3.3. Thanks to the induction hypothesis we reach the target

from any p-history in ri+1 with positive probability. In total, we reach X from p ′′ with

positive probability.

We have shown that for any region in the sequence B and any p-history in this region

the probability to reach X is positive. By the same arguments as in the induction step,

we get positive probability to reach X for any p ′′ ∈ r, also.

– Let Y be the set of all regions used by σ ′ to reach the target. I.e. r ′ ∈ Y iff r ′ < X and

there is a strategy π such that r ′ is in the sequence B provided by Claim A.2 for π or

r ′ = r. For any p-history p ′ ∈ Y and any π ∈ Π we have Pσ
′,π
p ′

(A) > 0 where A is a

set of runs that stay in the set of regions Y until they reach a region from X. We put

σ∗(p ′) = σ ′(p ′) for all p ′ ∈ Y . For the next iteration we set X := X ∪ Y .

We repeat these iterations until X = S(σ, p). It is easy to see that the iteratively constructed

strategy σ∗ can reach RT with positive probability from any p-history in S(σ, p). Because

of the first step of the proof, we have S(σ∗, p) ⊆ S(σ, p). Hence, σ∗ is a candidate strategy

for p.

�

A.2.1 Proof of Claim A.1

Recall that we have fixed a strategy σ almost-sure winning for a p-history p.
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Claim A.1. Let σ ′ be a regional strategy that selects only the actions from Ar in every r ∈

S(σ, p). Then for all π ∈ Π and p ′ ∈ S(σ, p) it holds that Pσ
′,π
p ′

(Reach(R \ S(σ, p))) = 0.

Proof. For a contradiction, let us assume that there is a region s < S(σ, p) such that

P
σ ′,π
p ′

(Reach(s)) > 0 for some p ′ ∈ S(σ, p) and π ∈ Π . Therefore, we can prove that there

is a sequence of regions r1 · · · rn−1s such that Pσ
′,π
p ′

(Play(r1 · · · rn−1s)) > 0. Indeed, for all i ∈ N,

let S i denote the set of runs that reach s in the ith step and let n be the smallest index for which

P
σ ′,π
p ′

(S n) > 0. We partition S n according to the sequence of regions visited in the first n steps.

Thus, we obtain finitely many equivalence classes, at least one of which is of non-zero Pσ
′,π
p ′

-

measure. This class corresponds to a sequence of regions r1 · · · rns.

Let v be the first region in this sequence not in S(σ, p). Further, if v , r1 then let u be the

region preceding v, else let u be the region containing p ′. Thus u is the last region in S(σ, p).

Let a be the action chosen by σ ′ in u. Hence also a ∈ Au, and there must be a set of runs with

positive Pσ,πp -measure (for some π ∈ Π) where σ gives positive weight to an action a and thus

by Lemma 3.3 leading with positive probability to v. Altogether, we get a contradiction with

v < S(σ, p). �

A.2.2 Proof of Claim A.2

Recall that we have fixed a strategy σ almost-sure winning for a p-history p.

Claim A.2. Let r be a region of S(σ, p), p ′ ∈ r a p-history, and X a set of target regions such

that RT ⊆ X and r < X. There is a regional strategy σ ′ that selects only actions from Ar ′ in every

r ′ ∈ S(σ, p) such that for every strategy π ∈ Π we have a finite sequence B of regions ending in

X satisfying Pσ
′,π
p ′

(Play(B)) > 0 and |B| ≤ |R|.

Proof. Firstly, we prove the lemma for one-player games since the arguments are simpler. Then

we prove the lemma for games in general.

For all i, we denote the set of runs that reach X in the ith step by Xi. Let n be the smallest

index for which Pσ
′

p ′
(Xn) > 0. Indeed, there is such an n, since Pσ

′

p ′
(Reach(RT )) > 0 and RT ⊆ X.

We partition Xn according to the sequence of regions visited in the first n steps. Thus, we ob-

tain finitely many parts, at least one of which is of non-zeroPσ
′

p ′
-measure. This part is represented

by a sequence of regions r0r1 · · · rn, where rn ∈ X.

For all i < n, let ai be an action chosen by σ on a set of runs of non-zero Pσp -measure

somewhere in ri and when performed (note that σ is randomizing) the successor will be the state

of ri+1 with non-zero probability.
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For every 0 ≤ i < n let last(ri) be the index of the last occurrence of ri in the sequence of

regions, i.e. last(ri) = max{ j | r j = ri} (note that σ is history-dependent). Let σ ′ be a DTA

strategy that for all 0 ≤ i < n chooses in region ri the action alast(ri), i.e. the action that has

been chosen in ri as the last one. This induces a sequence of regions and actions s0 = r0, b0 =

alast(s0), s1 = rlast(s0)+1, alast(s1), s2 = rlast(s1)+1, . . . , sk = rn where cycles on regions are eliminated.

We set B = s0 · · · sk.

By applying k times Lemma 3.3 we get that Pσ
′

p ′
(Play(B)) > 0.

We now extend this approach to games in general.

For all i, let Xi be the set of runs that reach X in the ith step. Since infπ∈Π Pσ,πp ′ (Reach(X)) > 0

it follows (using Lemma 3.3) that there is n ∈ N with infπ∈Π Pσ,πp ′ (Xn) > 0, i.e. for any opponent’s

strategy we have a guarantee to reach the target within n steps with positive probability using

σ. Indeed, if there was a sequence of strategies πi ∈ Π such that for all i ∈ N we would have

P
σ,πi
p ′

(
⋃

0≤ j≤i X j) = 0 it would be easy to construct π such that Pσ,π
p ′
(
⋃

j∈N0 X j) = 0.

For each region s and 0 ≤ i ≤ n, let S s,i be the set of runs from Xn that at the i-th position visit

s. We define a success rate of a region s on i-th position as sr(s, i) = infπ∈Π Pσ,πp ′ (S s,i). Clearly,

s(r, 0) > 0. We say that an action a is good for a region s in i-th position if for at least one of a’s

target t we have positive success rate sr(t, i+ 1). If player � controls a region s < X with positive

success rate on a position i, at least one of the enabled action must be good for the region s in

the i-th position. Similarly, if player ^ controls a region s < X with positive success rate on a

position i, all of his actions must be good for the region s in the i-th position.

We define σ ′ to take good action wherever possible and if more good actions are enabled in

a region then we choose the one which is good for this region in the highest position.

For a fixed strategy π we can find the sequence B by taking the sequence of regions induced

by π and σ ′ with good actions starting from p ′ till X.

And again, we conclude by applying the Lemma 3.3 as above. �

A.3 Proof of Proposition 3.10

Proposition 3.10. Let σ∗ be a regional strategy candidate for a p-history p. For every δ > 0 there

is ε > 0 and n ∈ N such that for every δ-separated p-history p ′ ∈ S(σ∗, p) and every strategy

π we have that Pσ
∗,π
p ′

(Reach≤n(RT )) > ε, where Reach≤n(RT ) is the set of p-runs that reach the

target within n steps.

First notice that the region relation allows us to make the following abstract view on the

system. In any region r one of the players has a set of available actions. For any action a there
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is a set of successor regions such that the probability of moving from r into a successor region

after taking action a is positive no matter where in r we started. This holds because regions form

a congruence with respect to the positive forward reachability in one step due to Lemma 3.3.

We denote these successor regions after taking action a as a-successor regions. Another

observation proved in Appendix A.2.2 shows that for any p-history p ′ ∈ S(σ∗, p) and any strategy

π there is a sequence of regions B = r1r2 · · · rn such that n ≤ |R|, rn ∈ RT , andPσ
∗,π
p ′

(Play(B)) > 0.

This allows us to define the distance of a region r from target regions as the minimal length n such

that for every p-history p ′ ∈ r and every strategy π there is a sequence of regions B = r1r2 · · · rn

such that n ≤ |R|, rn ∈ RT , and Pσ
∗,π
p ′

(Play(B)) > 0. Notice that every region of S(σ∗, p) has

distance lower or equal to |R|. Let r be any region, and n be its distance. Observe that if r is a

region of player �, there must be an action a such that some a-successor of r has distance n − 1.

If r is a region of player ^, for each action a there must be an a-successor of r with distance

lower than n.

First of all, we show that for any action a and any a-successor t the probability of moving to t

is bounded from below if we start in a δ-separated p-history. To be able to use the same argument

for another step, we need to stay in the separated parts of the regions. It is not possible to keep

the same separation, but it is sufficient to keep in each step a fixed fraction of the separation (we

provide the bound for 1/3 of δ).

Lemma A.3. For each δ > 0 there is b > 0 such that the following holds. For any regions r and

t, any action a available in r, and every δ-separated p-history p of r, we have

Pσa,πa
p (Play(t)) > 0 =⇒ Pσa,πa

p (Playδ/3(t)) > b

where σa and πa choose a in r and Playδ/3(t) is the set of p-runs that start in (δ/3)-separated

part of t.

This Lemma is proven in Appendix A.3.1. For a region r of player � there must be an action

a such that some a-successor t has lower distance. The strategy σ∗ must take any such action

a. Therefore, we have the probability bound b on moving from the δ-separated part of r to the

(δ/3)-separated part of a region with lower distance. Similarly for a region r of player ^ and for

any action a there must be an a-successor ta with lower distance. The probability of moving to

each ta by action a is bounded by b. Any strategy π cannot decrease the probability of moving to

a region with lower distance below the value b by mixing the available actions when starting in

a δ-separated p ∈ r.

Now we can conclude the proof. For any π there is in each step a bounded probability of

decreasing the distance and keeping the third of separation. Since the distance of regions in
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S (σ∗, p) is bounded by |R|, there is for an initial separation δ clearly a probability bound ε such

that reaching the target in |R| steps is bounded by ε from below for any strategy π of the opponent.

A.3.1 Proof of Lemma A.3

Lemma A.3. For each δ > 0 there is b > 0 such that the following holds. For any regions r and

t, any action a available in r, and every δ-separated p-history p of r, we have

Pσa,πa
p (Play(t)) > 0 =⇒ Pσa,πa

p (Playδ/3(t)) > b

where σa and πa choose a in r and Playδ/3(t) is the set of p-runs that start in (δ/3)-separated

part of t.

Proof. Let δ > 0, r and t be regions, p be a δ-separated p-history in r, and a be an action available

in r. Furthermore, we assume Pσa,πa
p (Play(t)) > 0. There must be some state s with a(s) > 0

through which we can reach t. It means that the flow of time from p after moving to s has an

intersection with some region r ′ such that triggering some event e in r ′ leads us in the target

region t. Let I be this intersection time interval. The probability that event e is triggered in I

must be positive. There are two cases, the interval I may be either bounded or unbounded.

First, we discuss the bounded case. Let I = (u, v). Notice that u and v lie on adjacent region

borders (i.e. there are p-clocks x and y such that x + u and y + v are integral values and no

other p-clock has fractional value between x and y). Because p is δ-separated, we have that

|u − v| ≥ δ. It is easy to see that all p-histories reached in the interval I ′ = (u + δ/3, v − δ/3) are

(δ/3)-separated. Indeed, the zero fractional value is put in an interval between x and y that is δ/3

separated from both of them and the flow of time does not change the differences between other

p-clocks.

The probability of moving after action a to the state s is fixed, a(s) = p > 0. We show that

the probability of triggering the event e in the time interval I ′ is bounded from below. Let ξ be

the current p-vector after moving to s. Notice that the upper bound of any event e ′ scheduled

in s must not be closer than at the distance v from ξ(e ′) because the only previous integral

bound is at u and the probability of triggering e in (u, v) would then be zero. The probability of

triggering e in I ′ can be underapproximated by the probability that e is triggered in I ′ and all other

scheduled events are triggered in (v − δ/3, v). Recall that the events are independent. For each

event e ′ scheduled in s we require it to be triggered in an interval of length at least δ/3. For an

event e ′ there is obviously a probability bound b(e ′) > 0 such that minx∈(l,M−δ/3)

∫x+δ/3
x fe ′(t)dt ≥

b(e ′) where l is the lower bound of e ′ and M is the maximal relevant bound in the system.
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This probability bound also holds for the conditioned density which is actually the same as the

unconditioned density but only shifted and scaled up. Therefore, integral over any interval of

fixed length contained in the positive range of the conditioned density is greater or equal to b(e ′).

Hence, the probability that e is triggered in I ′ is greater than b =
∏

e∈E b(e ′) and ε = p · b > 0.

Second, we discuss the unbounded case, i.e. the region t is the corner region that is un-

bounded in all dimension. Let I = (u,∞) for some u ∈ R≥0. Notice that any p-history in the

region t is δ-separated for any δ because all the p-clocks are beyond their relevant bounds. The

probability of triggering an event in the interval I is bounded from below. In fact, this probability

is underapproximated by the probability that all the competing events will be triggered later than

a + 1 and the event e will be triggered in the interval (a, a + 1). These two random events are

independent and both bounded from below by some b because all the events enabled in s have

positive density on (a,∞). Again, ε = p · b > 0. �

A.4 Proof of Proposition 3.11

Proposition 3.11. There is δ > 0 such that for every regional strategy σ ∈ Σ and every π ∈ Π , a

δ-separated p-history is reached almost surely from every p-history p.

We prove that there are n ∈ N, δ > 0, and ε > 0 such that for every p-history p and every

π ∈ Π , the probability of reaching a δ-separated p-history in n steps is greater than ε. Then, we

just iterate the argument.

For this proof we need to specify conditions under which the probability of triggering a fixed

event in any p-history from a fixed set of p-histories is bounded from below. Since the behavior

of the timed automaton is not important for these conditions, we formulate it for the game G and

not for the product game GA.

Definition A.4. Let M be the maximal relevant bound increased by 1. Let h be a history. We say

that a cylinder template B is fully feasible for h if for all runs ρ ∈ Play(B) it holds in the first

|h| + |B| steps of the concatenated run hρ that no event is triggered before its lower bound and

that the total waiting time for each event is never longer than its upper bound and also never

longer than M.

In other words, in a cylinder of a fully feasible template there are no runs that are by definition

infeasible with respect to the previous history h. In addition, we restrict events with infinite upper

bounds to be triggered in up to time M. Now, for fully feasible cylinder templates we can provide

probability bound for triggering an event.
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Lemma A.5. For each interval length ε > 0 there exists a probability bound b > 0 such that for

any pair of strategiesσ and π and for any x ∈ R≥0 and any templates B and B′ = B(s, [x, x+ε], e)

that are fully feasible for h it holds that a conditional probability

P
σ,π
h
(Play(B′) | A) ≥ b

where A is the set of runs that match the template B and the following state is s, i.e. A =⋃
e ′∈E Play(B(s, (0,∞), e ′)).

Proof. Let n be the length of h and m the length of B. According to the definition of the proba-

bility measure Pσ,π
h

, the left side of the inequality equals to∫
In+1

Staten+1 ·Winn+1 · · · · ·
∫
[x,x+ε] Staten+m+1 ·Wine

n+m+1 dtn+m+1 · · · dtn+1∑
e ′∈E

∫
In+1

Staten+1 ·Winn+1 · · · · ·
∫
(0,∞) Staten+m+1 ·Wine ′

n+m+1 dtn+m+1 · · · dtn+1

=
Staten+1 ·

∫
In+1

Winn+1 · · · · · Staten+m+1 ·
∫
[x,x+ε] Wine

n+m+1 dtn+m+1 · · · dtn+1

Staten+1 ·
∫

In+1
Winn+1 · · · · · Staten+m+1 ·

∑
e ′∈E

∫
(0,∞) Wine ′

n+m+1 dtn+m+1 · · · dtn+1

=
Staten+1 ·

∫
In+1

Winn+1 · · · · · Staten+m+1 ·
∫
[x,x+ε] Winn+m+1 dtn+m+1 · · · dtn+1

Staten+1 ·
∫

In+1
Winn+1 · · · · · Staten+m+1 · 1 dtn+m · · · dtn+1

= (∗).

In what follows, we show that
∫
[x,x+ε] Winn+m+1 dtn+m+1 is bounded from bellow, i.e., that

inf~t∈~I
∫
[x,x+ε] Winn+m+1dtn+m+1 ≥ b > 0 where by~t ∈ ~I we abbreviate the waiting times tn+1 ∈ In+1,

. . . , tn+m ∈ In+m. This leads to (∗) ≥ b. According to the definition of Winn+m+1, we have

inf
~t∈~I

∫ x+ε

x
Winn+m+1 dtn+m+1 = inf

~t∈~I

∫ x+ε

x
fe|b(e,n+m+1)(t) ·

∏
e ′∈E(s)

e ′,e

∫∞
t

fe ′|b(e ′,n+m+1)(y) dy dt

= (∗ ∗).

Now we use the fact that B is fully feasible for h. All the runs that match B must satisfy after

the m-th step the condition that all events e scheduled in s have at least x + ε time left to their

upper bound or the global bound M. Otherwise, B′ would not be fully feasible for h. So we

know that for all ~t ∈ ~I and any e ∈ E(s) the function fe|b(e,n+m+1) is positive on (x, x + ε). From

the definition of fe|b(e,n+m+1) one can see that for each ~t ∈ ~I it is the density function of the event

e, only shifted by some constant and scaled up by a constant factor. Let me = min{ue,M}. For a
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fixed ~t ∈ ~I there is a scale factor j ≥ 1 and a shift constant k ≥ 0 such that le ≤ k + x ≤ me − ε

and for any waiting time t ∈ [x, x + ε] we have fe|b(e,n+m+1)(t) = j · fe(t + k) ≥ fe(t + k).

So we can see that for any t ∈ [x, x + ε] it holds inf~t∈~I fe|b(e,n+m+1)(t) ≥ infz∈[le,me] fe(z). This

infimum may equal zero because fe is only guaranteed to be positive on (le, ue) and fe(le) or

fe(me) may be zero. Therefore, we restrict the interval. The function fe is positive on the closed

interval [le + ε/4,me − ε/4], therefore it has a minimal value ae > 0 on this interval. For any

t ∈ [x + 1/4 · ε, x + 3/4 · ε] it holds that inf~t∈~I fe|b(e,n+m+1)(t) ≥ infz∈[le+ε/4,me−ε/4] fe(z) = ae > 0.

Finally we get

(∗ ∗) ≥ inf
~t∈~I

∫ x+ 1
2 ·ε

x+ 1
4 ·ε

fe|b(e,n+m+1)(t) ·
∏

e ′∈E(s)
e ′,e

∫ x+ 3
4 ·ε

x+ 1
2 ·ε

fe ′|b(e ′,n+m+1)(y) dt

≥ inf
~t∈~I

∫ x+ 1
2 ·ε

x+ 1
4 ·ε

ae dy ·
∏

e ′∈E(s)
e ′,e

∫ x+ 3
4 ·ε

x+ 1
2 ·ε

ae ′ dy dt

≥
1

4
· ε · ae ·

∏
e ′∈E(s)

e ′,e

1

4
· ε · ae ′ = b > 0.

�

To finish the proof of Proposition 3.11 it is sufficient to prove the following lemma which is

its one-shot version (note that iteration of this lemma proves the proposition).

Lemma A.6. The probability of reaching a δ-separated p-history is globally bounded from be-

low, i.e. there is n ∈ N, δ > 0, b > 0 such that for each p-history p and pair of strategies σ and

π, the probability of reaching a δ-separated p-history from p in n steps is greater that b.

Proof. We show that the fractional parts of p-clocks in a p-vector are controlled by randomness

and that the players cannot avoid their eventual separation. The only way the players can interfere

is by choosing the successor state (indirectly by choosing actions). For each possible decision of

a player there is a probable enough response of the nature such that in n steps the nature leads

the play in a δ-separated p-history.

The nature responses by choosing a waiting interval I and an event e. Hence, together with

the players it forms in the game a cylinder template (s1, I1, e1)(s2, I2, e2) · · · . Since we do not

care for the time automaton part of the product game in this lemma, we use the probability space

from the game. We first formalize when such a choice of the nature is probable enough. Let pi

be the probability of Play(Bi) where Bi is the formed template Bi = (s1, I1, e1) · · · (si, Ii, ei). A

player may then lead the game into several states with different probabilities. But there must be
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some preferred state s such that the set of runs in Play(Bi) that continue into this state have at

least average probability, i.e. at least pi
|S | . So the nature puts si+1 = s and needs to choose an

appropriate event ei+1 and interval Ii+1 of fixed length such that Bi+1 is a fully feasible template

(see the definition above Lemma A.5). From Lemma A.5 we have that the probability pi+1 >
pi
|S | ·d

where d is some constant that depends only on the globally fixed interval length (the length of

Ii+1).

For any i, such cylinder template Bi has a bounded probability b = pi >
ci

|S |i . We need to find

a number n ∈ N, an interval length w > 0, and an appropriate tactics of the nature such that for

any decisions of the players

1. the template Bn ends in δ-separated p-history,

2. the template Bn is fully feasible and

3. all intervals in the template have length w.

First, we focus on the δ-separation (point 1). Observe that if a p-history is not δ-separated,

there are (at least) two p-clocks having their fractional parts closer than δ. Moreover, if none of

the clocks is reset during the n steps, their fractional parts stay closer than δ. On the other hand,

if it takes enough time so that both p-clocks exceed their relevant bounds, they are then according

to the definition δ-separated. Here, we use the global bound M. When M time units elapse, all

p-clocks become irrelevant or must be reset at least once. We need such n and such a tactics that

n steps take at least M time units. Again, let me = min{ue,M}. If we trigger every event e in

the interval [me − 1/2,me] then e can occur at most twice per time unit because me ≥ 1. In total,

there cannot be more than 2 · |E| event occurrences per time unit. As a result, n = 2 · |E| ·M steps

take at least M time units.

This does not guarantee δ-separation on its own. We need to utilize a simple combinatorial

argument. For this, we observe how the fractional parts of p-clock values evolve in time. Imagine

a [0, 1] line segment, each p-clock has its point on this segment according to its fractional value.

When the time flows, all the points are shifted to the right. When a point reaches 1, it then

continues again from 0. We need that every event e is triggered in the interval [me − 1/2,me].

To achieve it, every time a new event is scheduled, we put a reservation on some point x in the

interval [0, 1/2]. The reservation points are shifted by the time flow as well. Notice that the

reservation for event e is always in the distance x from the event. We trigger the event e when the

reservation reaches the point 1 and the event is in the distance x ∈ [0, 1/2] from me. All the newly

scheduled events and the clocks reset by the transition move to the reserved point (i.e. to 1 which
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identified with 0), the reservation is removed. If we always place the reservations δ-apart from

all the other reservations and p-clocks, then the p-clocks moved to this reserved position after

the event trigger are δ-separated from other p-clocks. At the beginning the p-clocks may not be

δ-separated. Since every p-clock becomes irrelevant or is moved (at least once) to a δ-separated

reserved position, we end up in a δ-separated p-history after n steps.

To assure the separated placement of reservations, we divide the [0, 1] interval into 12 · i

segments of equal length where i = |E ∪ X|. Since we put reservations only in the interval

[0, 1/2], we have 6 · i segments available. When placing a new reservation, there are at most

(2i − 1) p-clocks and other reservations on this interval. Hence at most (2i − 1) segments are

occupied and somewhere there must be three free segments in a row. We put the reservation in

the middle one. For δ equal to the length of one segment, this reservation is δ-separated from

other points.

The previous explanation made a simplification, we planned for an event trigger when the

reservation point exactly reaches 1. Instead, we need to reserve an interval of some fixed length

w (see point 3) and allow event trigger anywhere in this intervals. We place the reservation

interval in the middle of the selected segment. After an event trigger the p-clocks may be moved

to any position in this reserved interval, i.e. may be at most (w/2)-apart from the middle of the

segment. After n steps, the p-clocks may be ((w · n)/2)-apart from the middle of their segments.

We still need them to be inside the segment, therefore we put w = ε/n.

So far we have only explained how we place the reservation for a newly scheduled events.

Let (c, q, ξ) be the last p-control of the initial p-history p. We need to place reservations for all

the events in the initial p-vector ξ. For the moment, let us assume that all the events are at least

(1/2)-apart from their relevant bound. Let e be an event and x = frac(ξ(e)). We can place the

reservation inside the image of [x, x+ 1/2] under the function frac. By the same arguments there

must be three free segments next to each other somewhere in this area. Under this assumption our

argumentation is complete. It is easy to see that our explanation defines a tactics for the nature

to form the cylinder template Bn that satisfies the three points (notice that the formed template

is fully feasible because the interval of length w up to the n steps never cross the lower or upper

bounds of any event since they even do not cross the boundaries of segments).

Finally, we drop the assumption that in ξ each event is at least (1/2)-apart from its relevant

bound. Let V ⊆ E be the set of events e such that ξ(e) > me − 1. If all events e ∈ V are

triggered during a half of a time unit, we reach for any decisions of the players a time vector

where all events are at least (1/2)-apart from their relevant bound and move on to the previous

case satisfying this assumption. It is evident that the probability p that all events in V fire in up to
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the half of a time unit is bounded from below. All events occur independently, i.e. p =
∏

e∈V pe

where pe is the probability for the event e to occur in up to the half of a time unit. For an event e

in the interval [me−1/2,me] the probability pe is 1. For an event e in the interval [me−1,me−1/2]

the probability pe ≥
∫ue−1/2

le+1/4
fe(x)dx ≥ 1/4 · inf{ fe(x) | x ∈ [le + 1/4, ue − 1/2]} > 0.

�

B Algorithm - appendix proofs

B.1 Proof of Proposition 3.12

Formally, the game GA is a tuple (V, (V�,V^,V©), ) where

• V = R∪(R×Act) is the set of vertices partitioned into the set V� = {(c, q, Ξ) ∈ R | c ∈ C�}

of vertices of player �, the set V^ = {(c, q, Ξ) ∈ R | c ∈ C^} of vertices of player ^, and

the set V© = R × Act of vertices of the stochastic player.

•  is the transition relation, where for every action a and regions r = (c, q, Ξ) and r ′ =

(c ′, q ′, Ξ ′) we set

– r (r, a) if action a is enabled in region r, i.e. a ∈ A(c)

– (r, a) r ′ if the probability of moving from an arbitrary p ∈ r to r ′ with action a is

positive. This is a correct definition due to Lemma 3.3.

Proposition 3.12. Let G be a game and A be a deterministic timed automaton. For every p-

history p in a region r, a positional strategy is almost-sure winning for r inGA iff it is almost-sure

winning for p in GA,

Proof. We start with the “only if” part and then proceed with the “if” part:

• From Proposition 3.10 and Proposition 3.11 we have that every regional strategy that is

candidate for p is almost-sure winning for p. We show that every positional strategy σ

that is almost-sure winning for r in GA is a candidate for the p-history p. Recall that σ is

candidate for p if for any p ′ ∈ S(σ, p) it reaches the target positively for any π ∈ Π . Let S

be the set of regions reachable from r in the discrete game GA for some π. We show that

S(σ, p) ⊆ S and that for any p ′ ∈ S the strategy σ reaches in GA the target positively for

any π ∈ Π .
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Firstly, we show that S(σ, p) ⊆ S. Since we do not positively escape from S in GA, there

is no finite sequence of regions leading us away from S in GA using σ. Therefore, there

is also no sequence of regions leading us away from S in GA such that the sequence has

positive probability for σ. This follows by iterating Lemma B.1 which claims that the

construction respects one-step qualitative reachability:

Lemma B.1. Let r and t be regions and p ∈ r a p-history. For every action a available in

r and every strategy σa and πa choosing a in r, we have that

Pσa,πa
p (Play(t)) > 0 iff r (r, a) t

Proof. The lemma directly follows from Lemma 3.3 and the construction of GA. �

Secondly, we show that for any p ′ ∈ S the strategy σ reaches in GA the target positively

for any π ∈ Π . Let r ′ be the region such that p ′ ∈ r ′. Recall that GA is a discrete

stochastic game with finite state space. Since σ is winning, it guarantees reaching the

target T from r ′ with positive probability in at most 2 · |R| steps for any strategy π. Thus

for each stochastic vertex positively reachable from r (for some π), we can color some of

its outgoing transitions in such a way, that using only these colored transitions we always

end up in T within 2 · |R| steps no matter what transitions have been taken in V^. This

coloring thus produces a set B of sequences of regions which are of length ≤ 2 · |R|, end in

T , and for every strategy π in GA and p ′ ∈ r ′ we have Pσ,π
p ′
(
⋃

B∈B Play(B)) > 0 by Lemma

B.1. Hence for every p ′ ∈ r ′ and π ∈ Π also Pσ,π
p ′
(Reach(RT )) > 0 in GA.

• We show the “if” part by contraposition. Assume that a positional strategy σ is not almost-

sure winning for r. We show that there is π such that there is a positively reachable region

bad such that from bad the probability to reach T is zero. Hence, the regional strategy σ

is not almost-sure winning for p.

We knowσ is not almost-sure winning for r inGA. Therefore, there is a strategy π such that

it reaches a region from where it prevents reaching the target at all. We fix the choices of σ

and π in the gameGA and proceed analogously as in the preceding case. For each stochastic

vertex, we color an outgoing transition such that when using the colored transitions we

always reach a state from where T is not reachable at all. This yields a sequence of regions

B of length ≤ 2 · |R| ending in a bad region with Pσ,πp (Play(B)) > 0 by Lemma B.1. Thus

we positively reach a bad region where the probability to reach the target is zero, hence

infπ∈Π Pσ,πp (Reach(RT )) < 1.

�
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B.2 Algorithm for computing the game graph of GA

Now we give the algorithm for computing GA for a given game G and DTAA. First, we need a

symbolic representation for time areas. Let E ∪ X = a1, . . . , an. Recall that the relevant bound

of an p-clock ai is the maximal value of ai that matters for the region relation. We denote the

relevant bound of ai as bi. Let Ξ be a time area. The set of all p-vectors ξ ∈ Ξ may be described

by a structure (∆,�, c, d) where

• ∆ ⊆ E ∪ X is the set of relevant p-clocks

• � is a pre-order of fractional parts on the set ∆, ai � a j if frac(ai) ≤ frac(a j)

• c and d assign to each p-clock ai from ∆ a pair of integers c(i) and d(i) such that 0 ≤ c(i) ≤

d(i) ≤ bi and c(i) = d(i) or c(i) + 1 = d(i).

It is a straightforward observation that the set of all possible time area structures is finite and

that there is a bijection between time areas and time area structures. Now we need to define two

type of operations on time area structures, the reset operation and the time successor operation

and one type of predicate, satisfaction of guards. Let A = (∆,�, c, d) be a time area structure.

We say that A is thin if c(i) = d(i) for some relevant p-clock ai. Otherwise we say that A is thick.

Reset Let X ⊆ (E ∪ X) be a reset set. We denote the X-reset of A as A[X := ~0]. We define

A[X := ~0] = (∆ ′,� ′, c ′, d ′) such that intuitively all p-clocks ai in X become relevant in ∆ ′, are

placed on the beginning in the pre-order � ′ and are assigned 0 in c ′ and d ′. Precisely,

• ∆ ′ = ∆ ∪ X

• for a, b ∈ ∆ \ X, a � ′ b iff a � b, for a ∈ X we put

– a � ′ b for all b ∈ ∆ ′ and

– b � ′ a for all b ∈ X and for all b ∈ ∆ such that b ⊆ 0,

• for a ∈ ∆ \ X, c ′(a) = c(a) and d ′(a) = d(a) and for a ∈ X, c(a) = d(a) = 0.

Time successor If A = (∆,�, c, d) is such that ∆ is empty or that some event ai ∈ ∆ has reached

its relevant bound (c(i) = bi) the time successor of A is undefined. Otherwise we define the time

successor of A, denoted by succ(A) as a time area structure (∆ ′,� ′, c ′, d ′) such that

• if A is thin, let X ⊆ ∆ be the set of integral p-clocks that equal their relevant bound, and

Y ⊆ ∆ be the set of other integral p-clocks. Then ∆ ′ = ∆ \X, � ′, c ′ and d ′ equal �, c and d

restricted to ∆ ′ with the only exception of p-clocks a from Y for which d ′(a) = d(a) + 1.
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• if A is thick, let MA be the set of maximal p-clocks w.r.t. �, we put ∆ ′ = ∆ and d ′ = d,

all p-clocks a from MA are placed on the beginning of � ′ and c ′(a) = c(a) + 1, for other

p-clocks � ′=� and c ′ = c.

Guard satisfaction We write that A |= g if

• g = x ≤ b and d(x) ≤ b or if g = x < b and d(x) ≤ b and c(x) < b

• g = x ≥ b and c(x) ≥ b or if g = x > b and c(x) ≥ b and d(x) > b

• g = g1 ∧ g2 and A |= g1 and A |= g2

In Algorithm 2 we describe the procedure for constructing the region graph GA.

Theorem B.2. Algorithm 2 terminates and constructs the game GA.

Proof. The algorithm terminates if for any time area structure A there is a n such that succn(A) is

undefined. Obviously succ of a thin structure is a thick structure and vice versa. In each iteration

of succ on a thin structure d(e) is incremented for at least one p-clock. Each p-clock has a finite

relevant bound, so p-clocks are in sequence removed from the set ∆ until ∆ is empty or an event

reaches its relevant bound. In both cases succ of such a time area is undefined.

Clearly, the set of vertices is constructed according to the definition of GA, all edges from

non-stochastic to stochastic vertices are also added to according to the definition. We need to

show that upon termination for any stochastic vertex (r, a) and non-stochastic vertex r ′ it holds

that r  r ′ if and only if for any p ∈ r holds that Pσa,πa
p (Runs(r ′)) > 0 where σa and πa are

arbitrary strategies that choose action a where possible. The argumentation closely copies the

proof of Lemma 3.3. �
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Algorithm 2 Construct the game GA

input: events E, game G = (S , E,C�,C^,Act, F, A, µ0), and DTAA = (Q, Σ,X,−→, q0,T )
output: game GA

construct the set of all area structures AS

V� ← C� × Q × AS

V^ ← C^ × Q × AS

V© ← (C� ∪C^) × Q × AS × Act

V ← V� ∪ V^ ∪ V©

 ← ∅
for all non-stochastic vertices (c, q, A) ∈ (V� ∪ V^) do

for all a ∈ Act do

if a ∈ A(c) then

add to a pair ((c, q, A), (c, q, A, a))

for all stochastic vertices (c, q, A, a) ∈ V© do

for all states s in support of a do

B← A[X := ~0] where X is the set of p-clocks relevant in A that are not scheduled in s

while B has a time successor do

B← succ(B)

if B is thick then

for all events e relevant in B do

for all edges (q, L(s, e), g, X, q ′) in the automatonA do

if B |= g then

B′ ← B[X ∪ {e} := ~0]

c ′ ← F(s, e)

add to a pair ((c, q, A, a), (c ′, q ′, B′).

Prob((c, q, A, a))← uniform distribution

return (V, (V�,V^,V©), )
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