Abstract
It is difficult to generalize and accumulate experiences of system development as methodologies for building meta-learning support systems. Therefore, we need to build a framework that is useful to design and evaluate meta-learning support systems. Thus we propose a framework as a basis to design and evaluate meta-learning support systems. In this paper, we firstly describe our philosophy to solve the problem. Secondly, we propose a meta-learning process model as a basis to understand meta-learning task and what kinds of factors of difficulty exist in performing meta-learning activities. Thirdly, we explain our conceptualization as a basis to design support functions for prompting meta-learning processes. Then, we integrate a meta-learning process model and the conceptualizations, so that we can design and evaluate meta-learning systems. Finally, we illustrate the usefulness of the framework by taking our presentation based meta-learning system as an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Flavell, J.H.: Metacognitive aspects of problem solving. In: Resnick, L. (ed.) The Nature of Intelligence, pp. 231–235. Lawrence Erlbaum Associates, Hillsdale (1976)
Brown, A.L., Bransford, J.D., Ferrara, R.A., Campione, J.C.: Learning, Remembering, and Understanding. In: Markman, E.M., Flavell, J.H. (eds.) Handbook of Child Psychology, 4th edn. Cognitive Development, vol. 3, pp. 515–529. Wiley, New York (1983)
Kayashima, M., Inaba, A., Mizoguchi, R.: What Do You Mean by to Help Learning of Metacognition? In: Proc. of the 12th Artificial Intelligence in Education (AIED 2005), Amsterdam, The Netherlands, 18-22, pp. 346–353 (2005)
Kashihara, A., Taira, K., Shinya, M., Sawazaki, K.: Cognitive Apprenticeship Approach to Developing Meta-Cognitive Skill with Cognitive Tool for Web-based Navigational Learning. In: Proc. of the IASTED International Conference on Web-Based Education (WBE 2008), Innsbruck, Austria, March 17-19, pp. 351–356 (2008)
Kojima, K., Miwa, K.: A Case Retrieval System for Mathematical Learning from Analogical Instances. In: Proc. of the International Conference on Computers in Education (ICCE), pp. 1124–1128 (2003)
Maeno, H., Seta, K.: Guidance Generation for Facilitating Meta-Cognitive Learning Through Presentation Task*. In: Proc. of the 2009 International Conference on Multimedia, Information Technology and its Applications, Osaka, Japan, pp. 5–8. IEEE Press, Los Alamitos (2009), ISSN 1975-4736
Nakano, A., Hirashima, T., Takeuchi, A.: Developing and evaluation of a computer-based problem posing in the case of arithmetical word problems. In: The Fourth International Conference on Computer Applications, ICCA 2006 (2006)
John, B., Brown, A., Cocking, R. (eds.): Brain, Mind, Experience, and School., in How People Learn. National Academy Press, Washington (2000)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994) (illustrated edn)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seta, K., Fujiwara, M., Noguchi, D., Maeno, H., Ikeda, M. (2010). Building a Framework to Design and Evaluate Meta-learning Support Systems. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15384-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-15384-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15383-9
Online ISBN: 978-3-642-15384-6
eBook Packages: Computer ScienceComputer Science (R0)