Skip to main content

Finding Temporal Patterns Using Constraints on (Partial) Absence, Presence and Duration

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6276))

Abstract

When the evolution of variables over time is relevant to a classification task, established classifiers cannot be applied directly as the typical input format (data table) is not appropriate. We propose a new representation of temporal patterns that includes constraints on (partial) presence, (partial) absence as well as the duration of temporal predicates. A general-to-specific search-based algorithm is presented to derive classification rules. The approach evaluates promising on artificial and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Höppner, F., Klawonn, F.: Finding informative rules in interval sequences. Intelligent Data Analysis – An International Journal 6(3), 237–256 (2002)

    MATH  Google Scholar 

  4. Höppner, F., Topp, A.: Classification based on the trace of variables over time. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 739–749. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Kam, P.-S., Fu, A.W.-C.: Discovering temporal patterns for interval-based events. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 317–326. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Mörchen, F.: Time Series Knowledge Mining. PhD thesis, Philipps University Marburg (2006)

    Google Scholar 

  7. Shahar, Y., Musen, M.A.: RÉSUMÉ: A temporal abstraction system for patient monitoring. Computers and Biomedical Research 26, 155–273 (1993)

    Article  Google Scholar 

  8. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases. IEEE Trans. Knowledge Discovery and Engineering 4(4), 301–316 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peter, S., Höppner, F. (2010). Finding Temporal Patterns Using Constraints on (Partial) Absence, Presence and Duration. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15387-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15387-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15386-0

  • Online ISBN: 978-3-642-15387-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics