Abstract
When the evolution of variables over time is relevant to a classification task, established classifiers cannot be applied directly as the typical input format (data table) is not appropriate. We propose a new representation of temporal patterns that includes constraints on (partial) presence, (partial) absence as well as the duration of temporal predicates. A general-to-specific search-based algorithm is presented to derive classification rules. The approach evaluates promising on artificial and real data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)
Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Höppner, F., Klawonn, F.: Finding informative rules in interval sequences. Intelligent Data Analysis – An International Journal 6(3), 237–256 (2002)
Höppner, F., Topp, A.: Classification based on the trace of variables over time. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 739–749. Springer, Heidelberg (2007)
Kam, P.-S., Fu, A.W.-C.: Discovering temporal patterns for interval-based events. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 317–326. Springer, Heidelberg (2000)
Mörchen, F.: Time Series Knowledge Mining. PhD thesis, Philipps University Marburg (2006)
Shahar, Y., Musen, M.A.: RÉSUMÉ: A temporal abstraction system for patient monitoring. Computers and Biomedical Research 26, 155–273 (1993)
Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases. IEEE Trans. Knowledge Discovery and Engineering 4(4), 301–316 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peter, S., Höppner, F. (2010). Finding Temporal Patterns Using Constraints on (Partial) Absence, Presence and Duration. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15387-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-15387-7_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15386-0
Online ISBN: 978-3-642-15387-7
eBook Packages: Computer ScienceComputer Science (R0)