Skip to main content

Factorizing Three-Way Binary Data with Triadic Formal Concepts

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6276))

Abstract

We present a problem of factor analysis of three-way binary data. Such data is described by a 3-dimensional binary matrix I, describing a relationship between objects, attributes, and conditions. The aim is to decompose I into three binary matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with a small number of factors. The difference from the various decomposition-based methods of analysis of three-way data consists in the composition operator and the constraint on A, B, and C to be binary. We present a theoretical analysis of the decompositions and show that optimal factors for such decompositions are provided by triadic concepts developed in formal concept analysis. Moreover, we present an illustrative example, propose a greedy algorithm for computing the decompositions.

Supported by grant no. P202/10/0262 of the Czech Science Foundation and by grant no. MSM 6198959214.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belohlavek, R.: Optimal decompositions of matrices with grades. In: IEEE IS 2008, pp. 15-2–15-7 (2008)

    Google Scholar 

  2. Belohlavek, R.: Optimal triangular decompositions of matrices with entries from residuated lattices. Int. J. of Approximate Reasoning 50(8), 1250–1258 (2009)

    Article  MATH  Google Scholar 

  3. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Computer and System Sci. 76(1), 3–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belohlavek, R., Vychodil, V.: Factor analysis of incidence data via novel decomposition of matrices. LNCS (LNAI), vol. 5548, pp. 83–97. Springer, Heidelberg (2009)

    Google Scholar 

  5. Cichocki, A., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. J. Wiley, Chichester (2009)

    Google Scholar 

  6. Cormen, T.H., et al.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Frolov, A.A., et al.: Boolean factor analysis by Hopfield-like autoassociative memory. IEEE Trans. Neural Networks 18(3), 698–707 (2007)

    Article  Google Scholar 

  8. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  9. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. In: Proc. ICDM 2006, pp. 907–911 (2006)

    Google Scholar 

  10. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intelligence 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  12. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  13. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Google Scholar 

  14. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Stockmeyer, L.J.: The set basis problem is NP-complete. IBM Research Report RC5431, Yorktown Heights, NY (1975)

    Google Scholar 

  16. Tatti, N., Mielikäinen, T., Gionis, A., Mannila, H.: What is the dimension of your binary data? In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 603–612. Springer, Heidelberg (2006)

    Google Scholar 

  17. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belohlavek, R., Vychodil, V. (2010). Factorizing Three-Way Binary Data with Triadic Formal Concepts. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15387-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15387-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15386-0

  • Online ISBN: 978-3-642-15387-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics