Skip to main content

Categorized and Integrated Data Mining of Medical Data from the Viewpoint of Chance Discovery

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2010)

Abstract

In this paper, we analyze the procedure of computational medical diagnosis based on collected medical data. Especially, we focus on features or factors which interfere with sufficient medical diagnoses. In order to reduce the data complexity, we introduce medical data categorization. Data are categorized into six categories to be analyzed and to generate rule sets for medical diagnosis. We analyze the relationships among categorized data sets within the context of chance discovery, where hidden or potential relationships lead to improved medical diagnosis. We then suggest the possibility of integrating rule sets derived from categorized data for improving the accuracy of medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R.: Possibility of Integrated Data Mining of Clinical Data. Data Science Journal 6(supplement), S104–S115 (2007)

    Google Scholar 

  2. Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R.: Data mining of Multi-categorized Data. In: Raś, Z.W., Tsumoto, S., Zighed, D. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 182–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R.: Categorized and Integrated Data Mining of Clinical Data. In: Iwata, S., Ohsawa, Y., Tsumoto, S., Zhong, N., Shi, Y., Magnani, L. (eds.) Communications and Discoveries from Multidisciplinary Data. Studies in Computational Intelligence, vol. 123, pp. 315–330. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Akobeng, A.K.: Understanding diagnostic tests 3: Receiver Operating Characteristic Curves. Acta Paediatr 96(5), 644–647 (2007)

    Article  Google Scholar 

  5. Kobayashi, T., Kawakubo, T.: Prospective Investigation of Tumor Markers and Risk Assessment in Early Cancer Screening. Cancer 73(7), 1946–1953 (1994)

    Article  Google Scholar 

  6. Ohsawa, Y., Fujie, H., Saiura, A., Okazaki, N., Matsumura, N.: Process to Discovering Iron Decrease as Chance to Use Interferon to Hepatitis B. In: Proc. of AM 2004, pp. 21–24 (2004)

    Google Scholar 

  7. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Tsumoto, S.: Mining Diagnostic Rules from Clinical Databases Using Rough Sets and Medical Diagnostic Model. Information Sciences 162(2), 65–80 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R. (2010). Categorized and Integrated Data Mining of Medical Data from the Viewpoint of Chance Discovery. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15393-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15393-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15392-1

  • Online ISBN: 978-3-642-15393-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics