Skip to main content

A Dimension-Independent Data Structure for Simplicial Complexes

  • Conference paper
Proceedings of the 19th International Meshing Roundtable

Summary

We consider here the problem of representing non-manifold shapes discretized as d-dimensional simplicial Euclidean complexes. To this aim, we propose a dimension-independent data structure for simplicial complexes, called the Incidence Simplicial (IS) data structure, which is scalable to manifold complexes, and supports efficient navigation and topological modifications. The IS data structure has the same expressive power and exibits performances in query and update operations as the incidence graph, a widely-used representation for general cell complexes, but it is much more compact. Here, we describe the IS data structure and we evaluate its storage cost. Moreover, we present efficient algorithms for navigating and for generating a simplicial complex described as an IS data structure. We compare the IS data structure with the incidence graph and with dimension-specific representations for simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agoston, M.: Computer Graphics and Geometric Modelling. Springer, Heidelberg (2005)

    Google Scholar 

  2. Brisson, E.: Representing geometric structures in d dimensions: topology and order. In: Proc. of the 5th ACM Symp. on Computational Geometry, pp. 218–227. ACM Press, New York (1989)

    Google Scholar 

  3. Campagna, S., Kobbelt, L., Seidel, H.-P.: Directed Edges - a scalable representation for triangle meshes. Jour. of Graphics Tools 3(4), 1–12 (1998)

    Google Scholar 

  4. Castelo, A., Lopes, H., Tavares, G.: Handlebody representation for surfaces and Morse operators. In: Warren, J. (ed.) Proc. on Curves and Surfaces for Computer Vision and Graphics III, SPIE, Boston, pp. 270–283 (1992)

    Google Scholar 

  5. De Floriani, L., Greenfieldboyce, D., Hui, A.: A data structure for non-manifold simplicial d-complexes. In: Kobbelt, L., Schroder, P., Hoppe, H. (eds.) Proc. of the 2nd Eurographics Symp. on Geometry Processing, Nice, France, July 8-10, pp. 83–92 (2004)

    Google Scholar 

  6. De Floriani, L., Hui, A.: A scalable data structure for three-dimensional non-manifold objects. In: Kobbelt, L., Schroder, P., Hoppe, H. (eds.) Proc. of the 1st Eurographics Symp. on Geometry Processing, Aachen, Germany, June 23-25, pp. 72–82 (2003)

    Google Scholar 

  7. De Floriani, L., Hui, A.: Data structures for simplicial complexes: an analysis and a comparison. In: Desbrun, M., Pottmann, H. (eds.) Proc. of the 3rd Eurographics Symp. on Geometry Processing, Vienna, Austria, July 4-6, pp. 119–128 (2005)

    Google Scholar 

  8. De Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A multi-resolution topological representation for non-manifold meshes. CAD Journal 36(2), 141–159 (2004)

    Google Scholar 

  9. Dobkin, D., Laszlo, M.: Primitives for the manipulation of three-dimensional subdivisions. Algorithmica 5(4), 3–32 (1989)

    Article  MathSciNet  Google Scholar 

  10. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  11. Gurung, T., Rossignac, J.: SOT: a compact representation for tetrahedral meshes. In: Proc. of the SIAM/ACM Joint Conference on Geometric and Physical Modeling, San Francisco, USA, pp. 79–88 (2009)

    Google Scholar 

  12. Hui, A., Vaczlavik, L., De Floriani, L.: A decomposition-based representation for 3D simplicial complexes. In: Proc. of the 4th Eurographics Symp. on Geometry Processing, Cagliari, Italy, pp. 101–110 (June 2006)

    Google Scholar 

  13. Kallmann, M., Thalmann, D.: Star Vertices: a compact representation for planar meshes with adjacency information. Jour. of Graphics Tools 6(1), 7–18 (2001)

    Google Scholar 

  14. Lage, M., Lewiner, T., Lopes, H., Velho, L.: CHF: a scalable topological data structure for tetrahedral meshes. In: Proc. of the 18th Brazilian Symp. on Computer Graphics and Image Processing, pp. 349–356 (2005)

    Google Scholar 

  15. Lee, S.H., Lee, K.: Partial-entity structure: a fast and compact non-manifold boundary representation based on partial topological entities. In: Proc. of the 6th ACM Symp. on Solid Modeling and Applications, Ann Arbor, USA, pp. 159–170. ACM Press, New York (June 2001)

    Chapter  Google Scholar 

  16. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. CAD Journal 23(1), 59–82 (1991)

    MATH  Google Scholar 

  17. Lopes, H., Tavares, G.: Structural operators for modeling 3-manifolds. In: Proc. of the 4th ACM Symp. on Solid Modeling and Applications, pp. 10–18. ACM Press, New York (May 1997)

    Chapter  Google Scholar 

  18. Mantyla, M.: An Introduction to Solid Modeling. Computer Science Press (1987)

    Google Scholar 

  19. McMains, S.: Geometric Algorithms and Data Representation for Solid Freeform Fabrication. PhD thesis, University of California at Berkeley (2000)

    Google Scholar 

  20. Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent modeling with simplicial complexes. ACM Trans. on Graphics 12(1), 56–102 (1993)

    Article  MATH  Google Scholar 

  21. Pesco, S., Tavares, G., Lopes, H.: A stratification approach for modeling two dimensional cell complexes. Computers and Graphics 28, 235–247 (2004)

    Article  Google Scholar 

  22. Popovic, J., Hoppe, H.: Progressive simplicial complexes. In: Proc. of the ACM Computer Graphics, pp. 217–224. ACM Press, New York (1997)

    Google Scholar 

  23. Rossignac, J., Safonova, A., Szymczak, A.: 3D compression made simple: Edge-Breaker on a Corner table. In: Proc. of the Shape Modeling International, Genova, Italy. IEEE Computer Society, Los Alamitos (May 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Floriani, L., Hui, A., Panozzo, D., Canino, D. (2010). A Dimension-Independent Data Structure for Simplicial Complexes. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics