Skip to main content

Probabilistic Modeling of Mobile Agents’ Trajectories

  • Conference paper
Agents and Data Mining Interaction (ADMI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5980))

Included in the following conference series:

Abstract

We present a method for learning characteristic motion patterns of mobile agents. The method works on two levels. On the first level, it uses the expectation-maximization algorithm to build a Gaussian mixture model of the spatial density of agents’ movement. On the second level, agents’ trajectories as expressed as sequences of the components of the mixture model; the sequences are subsequently used to train hidden Markov models. The trained hidden Markov models are then employed to determine agent type, predict further agent movement or detect anomalous agents. The method has been evaluated in the maritime domain using ship trajectory data generated by the AgentC maritime traffic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. In: BMVC ’95: Proceedings of the 6th British Conference on Machine Vision, vol. 2, pp. 583–592. BMVA Press, Surrey (1995)

    Google Scholar 

  2. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1450–1464 (2006)

    Article  Google Scholar 

  3. Carmel, D., Markovitch, S.: Learning models of intelligent agents. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, pp. 62–67 (1996)

    Google Scholar 

  4. Sukthankar, G., Sycara, K.: Policy recognition for multi-player tactical scenarios. In: AAMAS ’07: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8. ACM, New York (2007)

    Google Scholar 

  5. Jakob, M., Vaněk, O., Urban, Š., Benda, P., Pěchouček, M.: AgentC: Agent-based testbed for adversarial modeling and reasoning in the maritime domain. In: Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010) (May 2010)

    Google Scholar 

  6. Jakob, M., Vaněk, O., Urban, Š., Benda, P., Pěchouček, M.: Employing agents to improve the security of international maritime transport. In: Proceedings of the 6th workshop on Agents in Traffic and Transportation (ATT2010) (May 2010)

    Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. IMB Piracy Reporting Centre (2009), http://www.icc-ccs.org/index.php?option=com_content&view=article&id=30

  10. Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(3), 397–408 (2005)

    Article  Google Scholar 

  11. Computer, H.Z., Zhong, H.: Detecting unusual activity in video (2004)

    Google Scholar 

  12. Ristic, B., La Scala, B., Morelande, M., Gordon, N.: Statistical analysis of motion patterns in AIS data: Anomaly detection and motion prediction. In: 11th International Conference on Information Fusion, July 3-30, 2008, pp. 1–7 (2008)

    Google Scholar 

  13. Bomberger, N., Rhodes, B., Seibert, M., Waxman, A.: Associative learning of vessel motion patterns for maritime situation awareness. In: 9th International Conference on Information Fusion, July 2006, pp. 1–8 (2006)

    Google Scholar 

  14. Rhodes, B., Bomberger, N., Zandipour, M.: Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness. In: 10th International Conference on Information Fusion, July 2007, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, Š., Jakob, M., Pěchouček, M. (2010). Probabilistic Modeling of Mobile Agents’ Trajectories. In: Cao, L., Bazzan, A.L.C., Gorodetsky, V., Mitkas, P.A., Weiss, G., Yu, P.S. (eds) Agents and Data Mining Interaction. ADMI 2010. Lecture Notes in Computer Science(), vol 5980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15420-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15420-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15419-5

  • Online ISBN: 978-3-642-15420-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics