Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6304))

  • 912 Accesses

  • 18 Citations

Abstract

The coalition structure generation problem represents an active research area in multi-agent systems. A coalition structure is defined as a partition of the agents involved in a system into disjoint coalitions. The problem of finding the optimal coalition structure is NP-complete. In order to find the optimal solution in a combinatorial optimization problem it is theoretically possible to enumerate the solutions and evaluate each. But this approach is infeasible since the number of solutions often grows exponentially with the size of the problem. In this paper we present a greedy adaptive search procedure (GRASP) to efficiently search the space of coalition structures in order to find an optimal one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  2. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–238 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT Press, Cambridge (2006)

    Google Scholar 

  4. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  5. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition structure generation. In: Prooceedings of AAMAS 2008, pp. 1417–1420 (2008)

    Google Scholar 

  7. Kahan, J.P., Rapoport, A.: Theories of Coalition Formation. Lawrence Erlbaum Associates Publisher, Mahwah (1984)

    Google Scholar 

  8. Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem. BIT 26(4), 467–474 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research 34(1), 521–567 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Sen, S., Dutta, P.S.: Searching for optimal coalition structures. In: Prooceedings of ICMAS 2000, pp. 287–292. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  11. Keinänen, H.: Simulated annealing for multi-agent coalition formation. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 30–39. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Mockus, J., Eddy, E., Mockus, A., Mockus, L., Reklaitis, G.V.: Bayesian Heuristic Approach to Discrete and Global Optimization. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  14. Milne, S.C.: Restricted growth functions, rank row matchings of partitions lattices, and q-stirling numbers. Advances in Mathemathics 43, 173–196 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rahwan, T., Michalak, T., Jennings, N., Wooldridge, M., McBurney, P.: Coalition structure generation in multi-agent systems with positive and negative externalities. In: Proceedings of IJCAI 2009, pp. 257–263 (2009)

    Google Scholar 

  16. Dang, V.D., Jennings, N.R.: Coalition structure generation in task-based settings. In: Proceeding of ECAI 2006, pp. 210–214. IOS Press, Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Mauro, N., Basile, T.M.A., Ferilli, S., Esposito, F. (2010). Coalition Structure Generation with GRASP. In: Dicheva, D., Dochev, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2010. Lecture Notes in Computer Science(), vol 6304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15431-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15431-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15430-0

  • Online ISBN: 978-3-642-15431-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics