Abstract
Unambiguous Non-Terminally Separated (UNTS) grammars have good learnability properties but are too restrictive to be used for natural language parsing. We present a generalization of UNTS grammars called Unambiguous Weakly NTS (UWNTS) grammars that preserve the learnability properties. Then, we study the problem of using them to parse natural language and evaluating against a gold treebank. If the target language is not UWNTS, there will be an upper bound in the parsing performance. In this paper we develop methods to find upper bounds for the unlabeled F 1 performance that any UWNTS grammar can achieve over a given treebank. We define a new metric, show that its optimization is NP-Hard but solvable with specialized software, and show a translation of the result to a bound for the F 1. We do experiments with the WSJ10 corpus, finding an F 1 bound of 76.1% for the UWNTS grammars over the POS tags alphabet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B., Strzalkowski, T.: A procedure for quantitatively comparing the syntactic coverage of English grammars. In: Black, E. (ed.) Proceedings of a workshop on Speech and natural language, pp. 306–311 (1991)
Achterberg, T.: SCIP - a framework to integrate Constraint and Mixed Integer Programming. Tech. rep. (2004)
Adriaans, P.W., Vervoort, M.: The EMILE 4.1 grammar induction toolbox. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 293–295. Springer, Heidelberg (2002)
Bod, R.: Unsupervised parsing with U-DOP. In: Proceedings of the 10th CoNLL (CoNLL-X), pp. 85–92 (2006)
Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 59–71. Springer, Heidelberg (2006)
Clark, A.: Learning deterministic context free grammars: The Omphalos competition. Machine Learning 66(1), 93–110 (2007)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)
Klein, D., Manning, C.D.: Corpus-based induction of syntactic structure: Models of dependency and constituency. In: Proceedings of the 42nd ACL, pp. 478–485 (2004)
Luque, F., Infante-Lopez, G.: Upper bounds for unsupervised parsing with Unambiguous Non-Terminally Separated grammars. In: Proceedings of CLAGI, 12th EACL, pp. 58–65 (2009)
Luque, F., Infante-Lopez, G.: PAC-learning unambiguous k,l-NTS ≤ languages. In: Sempere, J.M. (ed.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 122–134. Springer, Heidelberg (2010)
Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of english: The Penn treebank. Computational Linguistics 19(2), 313–330 (1994)
Poljak, S.: A note on stable sets and coloring of graphs. Commentationes Mathematicae Universitatis Carolinae 15(2), 307–309 (1974)
Seginer, Y.: Fast unsupervised incremental parsing. In: Proceedings of the 45th ACL, pp. 384–391 (2007)
van Zaanen, M.: ABL: alignment-based learning. In: Proceedings of the 18th conference on Computational linguistics, pp. 961–967 (2000)
van Zaanen, M., Geertzen, J.: Problems with evaluation of unsupervised empirical grammatical inference systems. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 301–303. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Luque, F.M., Infante-Lopez, G. (2010). Bounding the Maximal Parsing Performance of Non-Terminally Separated Grammars. In: Sempere, J.M., García, P. (eds) Grammatical Inference: Theoretical Results and Applications. ICGI 2010. Lecture Notes in Computer Science(), vol 6339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15488-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-15488-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15487-4
Online ISBN: 978-3-642-15488-1
eBook Packages: Computer ScienceComputer Science (R0)