Abstract
This paper presents an efficient algorithm that identifies a rich subclass of multiple context-free languages in the limit from positive data and membership queries by observing where each tuple of strings may occur in sentences of the language of the learning target. Our technique is based on Clark et al.’s work (ICGI 2008) on learning of a subclass of context-free languages. Our algorithm learns those context-free languages as well as many non-context-free languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)
Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of context free languages. In: [16], pp. 29–42
Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)
Clark, A., Eyraud, R., Habrard, A.: A note on contextual binary feature grammars. In: EACL 2009 workshop on Computational Linguistic Aspects of Grammatical Inference, pp. 33–40 (2009)
Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)
Kracht, M.: The Mathematics of Language. Studies in Generative Grammar, vol. 63, pp. 408–409. Walter de Gruyter, Berlin (2003)
Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theor. Comput. Sci. 223(1-2), 87–120 (1999)
Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The universal recognition problems for parallel multiple context-free grammars and for their subclasses. IEICE Transaction on Information and Systems E75-D(7), 499–508 (1992)
Gold, E.M.: System identification via state characterization. Automatica 8(5), 621–636 (1972)
Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)
Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science 76(2-3), 223–242 (1990)
Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)
Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and membership queries. Theoretical Computer Science 382(3), 183–197 (2007)
Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learning beyond context-freeness. In: [16], pp. 111–124
Clark, A.: Distributional learning of some context-free languages with a minimally adequate teacher. In: proceedings of the 10th International Colloquium on Grammatical Inference (2010) (to appear)
Clark, A., Coste, F., Miclet, L. (eds.): ICGI 2008. LNCS (LNAI), vol. 5278. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yoshinaka, R. (2010). Polynomial-Time Identification of Multiple Context-Free Languages from Positive Data and Membership Queries. In: Sempere, J.M., García, P. (eds) Grammatical Inference: Theoretical Results and Applications. ICGI 2010. Lecture Notes in Computer Science(), vol 6339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15488-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-15488-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15487-4
Online ISBN: 978-3-642-15488-1
eBook Packages: Computer ScienceComputer Science (R0)