Skip to main content

Learning PDFA with Asynchronous Transitions

  • Conference paper
Grammatical Inference: Theoretical Results and Applications (ICGI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6339))

Included in the following conference series:

  • 828 Accesses

Abstract

In this paper we extend the PAC learning algorithm due to Clark and Thollard for learning distributions generated by PDFA to automata whose transitions may take varying time lengths, governed by exponential distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carrasco, R.C.: Accurate computation of the relative entropy between stochastic regular grammars. RAIRO (Theoretical Informatics and Applications) 31(5), 437–444 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Castro, J., Gavaldà, R.: Towards feasible PAC-learning of probabilistic deterministic finite automata. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 163–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state automata. Journal of Machine Learning Research (2004)

    Google Scholar 

  4. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and hidden markov models: probability distributions, learning models and induction algorithms. Pattern Recognition 38(9), 1349–1371 (2005)

    Article  MATH  Google Scholar 

  5. Gavaldà, R., Keller, P.W., Pineau, J., Precup, D.: PAC-learning of markov models with hidden state. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 150–161. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Guttman, O., Vishwanathan, S.V.N., Williamson, R.C.: Learnability of probabilistic automata via oracles. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 171–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Palmer, N., Goldberg, P.W.: PAC-learnability of probabilistic deterministic finite state automata in terms of variation distance. Theor. Comput. Sci. 387(1), 18–31 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Poggi, N., Berral, J.L., Moreno, T., Gavaldà, R., Torres, J.: Automatic detection and banning of content stealing bots for e-commerce. In: NIPS 2007 Workshop on Machine Learning in Adversarial Environments for Computer Security (2007), http://mls-nips07.first.fraunhofer.de/

  9. Poggi, N., Moreno, T., Berral, J.L., Gavaldà, R., Torres, J.: Web customer modeling for automated session prioritization on high traffic sites. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 450–454. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Poggi, N., Moreno, T., Berral, J.L., Gavaldà, R., Torres, J.: Self-adaptive utility-based web session management. Computer Networks 53(10), 1712–1721 (2009)

    Article  MATH  Google Scholar 

  11. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic probabilistic finite automata. J. Comput. Syst. Sci. 56(2), 133–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines - part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013–1025 (2005)

    Article  Google Scholar 

  13. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines - part II. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1026–1039 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balle, B., Castro, J., Gavaldà, R. (2010). Learning PDFA with Asynchronous Transitions. In: Sempere, J.M., García, P. (eds) Grammatical Inference: Theoretical Results and Applications. ICGI 2010. Lecture Notes in Computer Science(), vol 6339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15488-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15488-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15487-4

  • Online ISBN: 978-3-642-15488-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics