Abstract
We recapitulate inference from membership and equivalence queries, positive and negative samples. Regular languages cannot be learned from one of those information sources only [1,2,3]. Combinations of two sources allowing regular (polynomial) inference are MQs and EQs [4], MQs and positive data [5,6], positive and negative data [7,8]. We sketch a meta-algorithm fully presented in [9] that generalizes over as many combinations of those sources as possible. This includes a survey of pairings for which there are no well-studied algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gold, E.: Language identification in the limit. Inf. & Contr. 10(5), 447–474 (1967)
Angluin, D.: Queries and concept learning. Mach. L. 2, 319–342 (1988)
Angluin, D.: Negative results for equivalence queries. Mach. L. 5, 121–150 (1990)
Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)
Angluin, D.: A note on the number of queries needed to identify regular languages. Inf. & Contr. 51, 76–87 (1981)
Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and membership queries. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.) ALT 2003. LNCS (LNAI), vol. 2842, pp. 440–453. Springer, Heidelberg (2003)
Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. Machine Perception and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific, Singapore (2002)
de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)
Kasprzik, A.: Generalizing over several learning settings. Technical report, University of Trier (2009)
Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)
Oncina, J., Garcia, P.: Inference of recognizable tree sets. Technical report, DSIC II/47/93, Universidad de Valencia (1993)
Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learning beyond context-freeness. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 111–124. Springer, Heidelberg (2008)
Tîrnăucă, C.: A note on the relationship between different types of correction queries. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 213–223. Springer, Heidelberg (2008)
Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397. Springer, Heidelberg (1989)
Fernau, H.: Identification of function distinguishable languages. Theoretical Computer Science 290(3), 1679–1711 (2003)
Fernau, H.: Even linear simple matrix languages: Formal language properties and grammatical inference. Theoretical Computer Science 289(1), 425–456 (2002)
Berman, P., Roos, R.: Learning one-counter languages in polynomial time. In: SFCS, pp. 61–67 (1987)
Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)
Clark, A.: Three learnable models for the description of language. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 16–31. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kasprzik, A. (2010). Generalizing over Several Learning Settings. In: Sempere, J.M., García, P. (eds) Grammatical Inference: Theoretical Results and Applications. ICGI 2010. Lecture Notes in Computer Science(), vol 6339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15488-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-15488-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15487-4
Online ISBN: 978-3-642-15488-1
eBook Packages: Computer ScienceComputer Science (R0)