Abstract
We describe in this paper an approach for mathematical function optimization using parallel computing combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) and Fuzzy Logic for parameter adaptation and integrate the results. The parallel evolutionary method combines the advantages of parallel computing, PSO and GA to give us an improved parallel FPSO+FGA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The parallel hybrid FPSO+FGA method was developed using a computer with processor Intel Core 2 Quad of 64 bits that works to a frequency of clock of 2.5 GHz, 6 GB of RAM Memory and Ubuntu Linux Operating System.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Heidelberg (1999)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995); Lu, J.-G.: Title of paper with only the first word capitalized. J. Name Stand. Abbrev. (in press)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Holland, J.H.: Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor (1975)
Valdez, F., Melin, P.: Parallel Evolutionary Computing using a cluster for Mathematical Function Optimization, Nafips. San Diego CA, USA, 598–602 (June 2007)
Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Transactions on Neural Networks 13(6), 1395–1408 (2002)
Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE transactions on neural networks 5(1), 3–14 (1994)
Goldberg, D.: Genetic Algorithms. Addison Wesley, Reading (1988)
Emmeche, C.: Garden in the Machine. The Emerging Science of Artificial Life, p. 114. Princeton University Press, Princeton (1994)
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE, Los Alamitos (1998)
Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
Montiel, O., Castillo, O., Melin, P., Rodriguez, A., Sepulveda, R.: Human evolutionary model: A new approach to optimization. Inf. Sci. 177(10), 2075–2098 (2007)
Castillo, O., Valdez, F., Melin, P.: Hierarchical Genetic Algorithms for topology optimization in fuzzy control systems. International Journal of General Systems 36(5), 575–591 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Valdez, F., Melin, P., Castillo, O. (2010). Fuzzy Control for Dynamical Parameter Adaptation in a Parallel Evolutionary Method Combining Particle Swarm Optimization and Genetic Algorithms. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-15534-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15533-8
Online ISBN: 978-3-642-15534-5
eBook Packages: EngineeringEngineering (R0)