Abstract
Today the issue of logistics is a very important within companies to the extent that some have departments devoted exclusively to it. This has evolved over time and today is a fundamental aspect in the fight business seeking to consolidate or remain leaders in their field. With the above we know that logistics can be divided into different classes, however, in this regard, our study is based on the timely distribution to the customer with a lower cost, higher sales and better utilization of space resulting in excellent service. Finally, prepare a comparative analysis of the results with respect to another method of optimization solution space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajith, A., et al. (eds.): Swarm Intelligence in Data Mining. SCI, vol. 34, p. 270. Springer, Berlin (September 2006) ISBN: 3-540-34955-3
Lourdes, A., Carlos, C.: Algoritmos Evolutivos: un enfoque practico. In: Grupo, A. (ed.) Primera Edicion, México (2007)
Alan, C.M.E., Jaime, M.A., Manuel, A.R.J., Calleros, G., Rafael, R., Antonio, D.C.: Acceso a Repositorios de Objetos de Aprendizaje a Travès de un Sistema de Gestión de Contenidos. In: Conferencia Conjunta Iberoamericana sobre Tecnologías de Aprendizaje (CCITA 2009), July 6-10, Mèrida Yucatán, México (2009)
Cowan George, S., Reynolds Robert, G.: Acquisition of Software engineering knowledge, vol. 14. World Scientific, Singapore
Dasarathy/Belur, V.: Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Orlando (Aprill 2001)
Gill, S., et al.: Data Wherehousing. La integracion de la informacilon para la mejor toma de decisions. Prentice Hall, Mexico (1996)
Landa-Becerra, R.: Uso de Informacón del Dominio para Mejorar el Desempeño de un Algoritmo Evolutivo. CINVESTV PhD Thesis (2007)
Muñoz, A., Hernandez, A., Villa, E.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 209–216. Association for Computing Machinery, Newyork (2005)
Jaime, M.A., Rene, S.S., John Squires, A.R.-g., Ricardo, A., Ricardo, M.G.: Aprendizaje Multiculturales. In: Topicos selectos de Tecnologia Educativa, Universidad de Colima, Compilador, Acosta Ricardo (April 2010)
Ochoa, A., Gonzalez, S.: Simulación Social de una Sociedad Artificial basada en Algoritmos Culturales. International Journal of South American Archeology (IJSA 2011-0626) (2009)
Juan, P.: Méodos y Modelos de Investigación de Operaciones: Modelos Determinísticos, vol. 1. Limusa
Reynolds, G.R., Sverdlink, W.: Problem Solving Using Cultural Algorithms. In: International Conference on Evolutionary Computation (1994)
Reynolds, G.R., Peng, B., Whallon, R.: Emergent Social Structures in Cultural Algorithms (2008)
Carlos, R.L.J.: Uso de la minería de datos con fines predictorios de la infraestructura de seguridad de redes Monterrey, N. L (2004)
Taha, H.: Investigación de Operaciones. Séptima edición, México D.F., pp. 71–90. Prentice Hall, Englewood Cliffs (2004)
Ian, W.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ochoa, A., Garcia, Y., Yañez, J. (2010). Logistics Optimization Service Improved with Artificial Intelligence. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-15534-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15533-8
Online ISBN: 978-3-642-15534-5
eBook Packages: EngineeringEngineering (R0)