Abstract
Wireless sensor networks (WSN) are an emerging technology based on the progress of electrical and mechanical engineering, as well as computer science in the last decade. In this work, a FIS (Fuzzy Inference System) approach is used to increase the energy efficiency of a preamble sampling MAC (Media Access Control) protocol for WSN. The FIS replaces a traditional average approach reducing the number of sampling points and the processing time required by the traditional approach. In addition, the FIS is designed to have a small memory footprint and fast response; this considering that the FIS must be implemented in WSN nodes that use microcontroller that are limited in memory and processing speed. The result of using the FIS approach shows up to 90% reduction (best case scenario) on the waste of energy consumed by overhearing having an increment of energy efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a survey. Computer Networks Journal 38(4), 393–422 (2002)
Sohoraby, K., Minoli, D., Znati, T.: Wireless sensor networks. Technology, protocols and applications. John Wiley & Sons, New Jersey (2007)
Hac, A.: Wireless Sensor Network Designs. John Wiley & Sons, Honolulu (2003)
Callaway Jr., E., Callaway, E.: Wireless Sensor Networks: Architectures & Protocols. Auerbach Publications, Florida (2003)
Crossbow Technologies, Inc., http://www.xbow.com
Sentilla Corporation, http://www.sentilla.com
Aguilar, L.: LiSANDRA an Experimental Wireless Network, PhD thesis, Universidad Autónoma de Baja California (2009)
Ilyas, M., Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems. CRC Press, Florida (2004)
Aguilar, L., Licea, G., García-Macías, J.A.: An Experimental Wireless Network applied to engineering courses. Computer Applications in Engineering Education. Wiley-InterScience, Hoboken (2009)
Atmel Corporations, http://www.atmel.com
Sensirion, http://www.sensirion.com
Texas Advanced Optoelectronic Solutions, Inc., http://www.taosinc.com
Linx Technologies, Inc., http://www.linxtechnologies.com
WinAVR, http://winavr.sourceforge.net
Danahoo, M., Calvert, K.: TCP/IP Sockets in C: Practical Guide for Programmers. Morgan Kaufmann Publishers, San Francisco (2001)
El-Hoiydi, A.: Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In: Proc. IEEE Int. Conf. on Communications, ICC 2002 (April 2002)
El-Hoiydi, A., Decotignie, J.: WiseMAC: An ultra-low power MAC protocol for multi-hop wireless sensor networks. In: Proc. 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks (2004)
Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. SenSys 2004, pp. 95–107 (2004)
IEEE Computer Society LAN MAN Standards Committee: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15 (2004)
Chipcon, Products from Texas Instruments. CC2420 data sheet, 2.4 Ghz IEEE 802.15.4 / Zigbee-ready RF transceiver
Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble mac protocol for duty-cycled wireless sensor networks. In: Proc. 2nd ACM Conf. on Embedded Networked Sensor Systems, SenSys 2006, pp. 307–320 (2006)
Wong, K.-J., Arvind, D.: Speckmac: Low-power decentralized MAC protocol low data rate transmissions in specknets. In: Proc. 2nd IEEE Int. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, REALMAN 2006 (May 2006)
Merlin, C.J., Heinzelman, W.B.: Network-aware adaptation of MAC scheduling for wireless sensor networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007 Poster Session. LNCS, vol. 4549. Springer, Heidelberg (2007)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)
Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co., Amsterdam (1985)
Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Aguilar, L., Castillo, O., García-Macías, J.A., Licea, G. (2010). Increasing Energy Efficiency of a Preamble Sampling MAC Protocol for Wireless Sensor Networks Using a Fuzzy Logic Approach. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15534-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15533-8
Online ISBN: 978-3-642-15534-5
eBook Packages: EngineeringEngineering (R0)