Skip to main content

Increasing Energy Efficiency of a Preamble Sampling MAC Protocol for Wireless Sensor Networks Using a Fuzzy Logic Approach

  • Chapter
Soft Computing for Intelligent Control and Mobile Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 318))

  • 1514 Accesses

Abstract

Wireless sensor networks (WSN) are an emerging technology based on the progress of electrical and mechanical engineering, as well as computer science in the last decade. In this work, a FIS (Fuzzy Inference System) approach is used to increase the energy efficiency of a preamble sampling MAC (Media Access Control) protocol for WSN. The FIS replaces a traditional average approach reducing the number of sampling points and the processing time required by the traditional approach. In addition, the FIS is designed to have a small memory footprint and fast response; this considering that the FIS must be implemented in WSN nodes that use microcontroller that are limited in memory and processing speed. The result of using the FIS approach shows up to 90% reduction (best case scenario) on the waste of energy consumed by overhearing having an increment of energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a survey. Computer Networks Journal 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Sohoraby, K., Minoli, D., Znati, T.: Wireless sensor networks. Technology, protocols and applications. John Wiley & Sons, New Jersey (2007)

    Book  Google Scholar 

  3. Hac, A.: Wireless Sensor Network Designs. John Wiley & Sons, Honolulu (2003)

    Book  Google Scholar 

  4. Callaway Jr., E., Callaway, E.: Wireless Sensor Networks: Architectures & Protocols. Auerbach Publications, Florida (2003)

    Book  Google Scholar 

  5. Crossbow Technologies, Inc., http://www.xbow.com

  6. Sentilla Corporation, http://www.sentilla.com

  7. Aguilar, L.: LiSANDRA an Experimental Wireless Network, PhD thesis, Universidad Autónoma de Baja California (2009)

    Google Scholar 

  8. Ilyas, M., Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems. CRC Press, Florida (2004)

    Book  Google Scholar 

  9. Aguilar, L., Licea, G., García-Macías, J.A.: An Experimental Wireless Network applied to engineering courses. Computer Applications in Engineering Education. Wiley-InterScience, Hoboken (2009)

    Google Scholar 

  10. Atmel Corporations, http://www.atmel.com

  11. Sensirion, http://www.sensirion.com

  12. Texas Advanced Optoelectronic Solutions, Inc., http://www.taosinc.com

  13. Linx Technologies, Inc., http://www.linxtechnologies.com

  14. WinAVR, http://winavr.sourceforge.net

  15. Danahoo, M., Calvert, K.: TCP/IP Sockets in C: Practical Guide for Programmers. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  16. El-Hoiydi, A.: Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In: Proc. IEEE Int. Conf. on Communications, ICC 2002 (April 2002)

    Google Scholar 

  17. El-Hoiydi, A., Decotignie, J.: WiseMAC: An ultra-low power MAC protocol for multi-hop wireless sensor networks. In: Proc. 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks (2004)

    Google Scholar 

  18. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. SenSys 2004, pp. 95–107 (2004)

    Google Scholar 

  19. IEEE Computer Society LAN MAN Standards Committee: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15 (2004)

    Google Scholar 

  20. Chipcon, Products from Texas Instruments. CC2420 data sheet, 2.4 Ghz IEEE 802.15.4 / Zigbee-ready RF transceiver

    Google Scholar 

  21. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble mac protocol for duty-cycled wireless sensor networks. In: Proc. 2nd ACM Conf. on Embedded Networked Sensor Systems, SenSys 2006, pp. 307–320 (2006)

    Google Scholar 

  22. Wong, K.-J., Arvind, D.: Speckmac: Low-power decentralized MAC protocol low data rate transmissions in specknets. In: Proc. 2nd IEEE Int. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, REALMAN 2006 (May 2006)

    Google Scholar 

  23. Merlin, C.J., Heinzelman, W.B.: Network-aware adaptation of MAC scheduling for wireless sensor networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007 Poster Session. LNCS, vol. 4549. Springer, Heidelberg (2007)

    Google Scholar 

  24. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  26. Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co., Amsterdam (1985)

    Google Scholar 

  27. Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aguilar, L., Castillo, O., García-Macías, J.A., Licea, G. (2010). Increasing Energy Efficiency of a Preamble Sampling MAC Protocol for Wireless Sensor Networks Using a Fuzzy Logic Approach. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15534-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15533-8

  • Online ISBN: 978-3-642-15534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics