Abstract
Differential privacy is a strong notion for protecting individual privacy in privacy preserving data analysis or publishing. In this paper, we study the problem of differentially private histogram release based on an interactive differential privacy interface. We propose two multidimensional partitioning strategies including a baseline cell-based partitioning and an innovative kd-tree based partitioning. In addition to providing formal proofs for differential privacy and usefulness guarantees for linear distributive queries , we also present a set of experimental results and demonstrate the feasibility and performance of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. Journal of the ACM 50(4), 506–519 (2003)
Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC 2008: Proceedings of the 14th Annual ACM International Symposium on Theory of Computing, Victoria, Canada, May 17-20, pp. 609–617 (2008)
Dwork, C.: A firm foundation for private data analysis (to appear)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference, pp. 265–284 (2006)
Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 381–390. ACM, New York (2009)
Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, May 31-June 2, pp. 361–370 (2009)
Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning noisy parities and halfspaces. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, CA, October 21-24, pp. 563–572 (2006)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey on recent developments. ACM Computing Surveys 42(4) (2010)
Götz, M., Machanavajjhala, A., Wang, G., Xiao, X., Gehrke, J.: Privacy in search logs. CoRR, abs/0904.0682 (2009)
Hardt, M., Talwar, K.: On the geometry of differential privacy. In: STOC 2010: Proceedings of the 42nd ACM symposium on Theory of computing, pp. 705–714. ACM, New York (2010)
Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially-private queries through consistency. In: VLDB (2010)
Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using differential privacy. In: 13th International Conference on Extending Database Technology, EDBT (2010)
Ioannidis, Y.: The history of histograms (abridged). In: Proc. of VLDB Conference (2003)
Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries and clicks privately. In: WWW (2009)
Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: PODS 2010: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems of data, pp. 123–134. ACM, New York (2010)
Kamber, M., Han, J.W.: Data mining: concepts and techniques, 2nd edn. Morgan Kaufman, San Francisco (2006)
McSherry: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: SIGMOD 2009: Proceedings of the 35th SIGMOD international conference on Management of data, pp. 19–30. ACM, New York (2009)
McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: KDD 2009: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York (2009)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science, Providence, RI, October 20-23, pp. 94–103 (2007)
Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: Algorithms, complexity, and applications. In: ICDT, pp. 236–256 (1999)
Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC 2010, pp. 765–774 (2010)
Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. CoRR abs/0909.5530 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiao, Y., Xiong, L., Yuan, C. (2010). Differentially Private Data Release through Multidimensional Partitioning. In: Jonker, W., Petković, M. (eds) Secure Data Management. SDM 2010. Lecture Notes in Computer Science, vol 6358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15546-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-15546-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15545-1
Online ISBN: 978-3-642-15546-8
eBook Packages: Computer ScienceComputer Science (R0)