Skip to main content

Exact and Efficient Proximity Graph Computation

  • Conference paper
Advances in Databases and Information Systems (ADBIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6295))

Abstract

Graph Proximity Cleansing (GPC) is a string clustering algorithm that automatically detects cluster borders and has been successfully used for string cleansing. For each potential cluster a so-called proximity graph is computed, and the cluster border is detected based on the proximity graph. Unfortunately, the computation of the proximity graph is expensive and the state-of-the-art GPC algorithms only approximate the proximity graph using a sampling technique.

In this paper we propose two efficient algorithms for the exact computation of proximity graphs. The first algorithm, PG-DS, is based on a divide-skip technique for merging inverted lists, the second algorithm, PG-SM, uses a sort-merge join strategy to compute the proximity graph. While the state-of-the-art solutions only approximate the correct proximity graph, our algorithms are exact. We experimentally evaluate our solution on large real world datasets and show that our algorithms are faster than the sampling-based approximation algorithms, even for very small sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazeika, A., Böhlen, M.H.: Cleansing databases of misspelled proper nouns. In: CleanDB (2006)

    Google Scholar 

  2. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string searches. In: ICDE 2008: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 257–266. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge Univ. Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Pietarinen, L., Srivastava, D.: Using q-grams in a dbms for approximate string processing. IEEE Data Eng. Bull. 24(4), 28–34 (2001)

    Google Scholar 

  5. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of approximate queries on string collections using variable-length grams. In: VLDB (2007)

    Google Scholar 

  6. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)

    MathSciNet  Google Scholar 

  7. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching. J. Algorithms 10(2), 157–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Waterman, M.S., Smith, T.F., Beyer, W.A.: Some biological sequence metrics. Advances in Mathematics 20(3), 367–387 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. In: IEEE Intelligent Systems (2003)

    Google Scholar 

  10. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  11. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates. In: International Conference on Data Engineering, pp. 865–876 (2005)

    Google Scholar 

  12. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 131–140. ACM, New York (2008)

    Chapter  Google Scholar 

  13. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate string joins in a database (almost) for free. In: VLDB 2001: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 491–500. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  14. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate joins for data-centric XML. In: ICDE, pp. 814–823. IEEE, Los Alamitos (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kazimianec, M., Augsten, N. (2010). Exact and Efficient Proximity Graph Computation. In: Catania, B., Ivanović, M., Thalheim, B. (eds) Advances in Databases and Information Systems. ADBIS 2010. Lecture Notes in Computer Science, vol 6295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15576-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15576-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15575-8

  • Online ISBN: 978-3-642-15576-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics