Skip to main content

Deferring Dag Construction by Storing Sums of Floats Speeds-Up Exact Decision Computations Based on Expression Dags

  • Conference paper
Mathematical Software – ICMS 2010 (ICMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Included in the following conference series:

Abstract

Expression-dag-based number-types are a very general and user-friendly way to achieve exact geometric computation, a widely accepted approach to the reliable implementation of geometric algorithms. Such number-types record the computation history of a numerical value in an expression dag in order to allow for recomputing the value or an approximation of it at a later stage. We describe how to defer dag construction by using error-free transformations into sums of floating-point numbers. We store a limited number of summands in statically allocated memory in order to postpone or avoid dag creation which involves expensive dynamic memory allocations. Furthermore we report on experiments where we compare different implementation strategies of our new approach. The experiments show that for small polynomial expressions typically arising in geometric applications our approach is superior to existing expression-dag-based number-types in the presence of degenerate and nearly degenerate configurations and competitive otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: 15th ACM Symposium on Computational Geometry (SCG 1999), pp. 341–350. ACM, New York (1999)

    Google Scholar 

  2. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org/

  3. Dekker, T.J.: A floating-point technique for extending the available precision. Num. Math. 18(2), 224–242 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Du., Z.: Guaranteed Precision for Transcendental and Algebraic Computation made Easy. PhD thesis, Courant Institute of Mathematical Sciences, New York University (May 2006)

    Google Scholar 

  5. Kahan, W.: Further remarks on reducing truncation errors. Comm. of the ACM 8(1), 40 (1965)

    Article  Google Scholar 

  6. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: 15th ACM Symposium on Computational Geometry (SCG 1999), pp. 351–359. ACM, New York (1999)

    Google Scholar 

  7. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1997)

    Google Scholar 

  8. LEDA: Library of Efficient Data Structures and Algorithms, http://www.algorithmic-solutions.com/

  9. Mörig, M., Schirra, S.: On the design and performance of reliable geometric predicates using error-free transformations and exact sign of sum algorithms. In: 19th Canadian Conference on Computational Geometry (CCCG 2007), pp. 45–48 (August 2007)

    Google Scholar 

  10. MPFR: A multiple precision floating-point library, http://www.mpfr.org/

  11. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal on Scientific Computing 26(6), 1955–1988 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Overton, M.L.: Numerical Computing with IEEE Floating-Point Arithmetic. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  13. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete and Computational Geometry 18(3), 305–363 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shewchuk, J.R.: Companion web page to [13] (1997), http://www.cs.cmu.edu/~quake/robust.html

  15. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  16. Yap, C.: Towards exact geometric computation. Comput. Geom. Theory Appl. 7(1-2), 3–23 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: A library for exact numeric computation in geometry and algebra. In: Fukuda, K., et al. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mörig, M. (2010). Deferring Dag Construction by Storing Sums of Floats Speeds-Up Exact Decision Computations Based on Expression Dags. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics