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Enumerating Galois Representations in Sage
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Abstract. We present an algorithm for enumerating all odd semisimple
two-dimensional mod p Galois representations unramified outside p. We
also discuss the implementation of this algorithm in Sage and give a
summary of the results we obtained4.
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1 Introduction

A great deal of arithmetic questions have found natural interpretations (and
often, answers) within the realm of Galois representations and modular forms:
such applications include Diophantine equations, quadratic forms, or the study
of combinatorial-arithmetic objects such as partitions. In this context, it is of
interest to dispose of computational tools for working with modular forms and
Galois representations.

In this note, we focus on two-dimensional Galois representations mod p, i.e.
continuous group homomorphisms

ρ : Gal(Q/Q) −→ GL2(IFp) .

(More precisely, we consider such representations which are semisimple, unram-
ified outside p, and odd. For the theoretical background, we refer the reader to
Khare’s survey [3] or to Edixhoven’s paper [2].)

By Serre’s conjecture, now a theorem of Khare-Wintenberger (see [4], [5]),
these representations are closely related to modular forms (mod p) of level 1
which are eigenvectors for all the Hecke operators. If f is such a form, of weight k
and eigenvalues (aℓ), then for all primes ℓ 6= p we have

charpoly(ρ(Frobℓ)) = X2 − aℓX + ℓk−1 ,

4 The authors wish to thank Kevin Buzzard for providing several corrections and a
significant improvement to Theorem 1, and the referees for suggesting improvements
to the exposition.
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where Frobℓ is a Frobenius element at ℓ inside Gal(Q/Q).
The (Hecke) eigensystem corresponding to a mod p eigenform f is the se-

quence (aℓ) of eigenvalues indexed by all primes ℓ 6= p. The i-th twist of (aℓ) is
by definition the eigensystem

(

ℓiaℓ
)

. We write [aℓ] for a finite truncation of (aℓ),
where the cutoff point will be clear from the context.

Inspired by a remark of Khare5, we have set out to enumerate all odd semisim-
ple mod p representations which are unramified outside p. This corresponds to
enumerating all the Hecke eigensystems which occur in spaces of level 1 modular
forms mod p.

2 Description of the Algorithm

The starting point is a classical result in the theory of modular forms mod p
(see Theorem 3.4 in [2]): every Hecke eigensystem occurs, up to twist, in weights
less than or equal to p + 1. Therefore it suffices to generate the spaces Mk for
weights 4 ≤ k ≤ p+1 and find all the eigenforms in them, which will produce all
the Hecke eigensystems up to twist. This list may however contain duplicates;
we investigate this question in detail in [1], where we prove

Theorem 1.

(a) Let f1 and f2 be eigenforms of weights k1, k2 ≤ p+ 1. If f1 and f2 have the
same eigensystem up to twist, then k1 + k2 = p+ 1 or k1 + k2 = p+ 3.

(b) Let f1 and f2 be eigenforms of weights related in one of the ways described
in (a). If f1 and f2 do not have the same eigensystem up to twist, then this
is detected by a prime ℓ 6= p satisfying ℓ ≤ (p+ 1)/6.

In the process of proving Theorem 1, we obtained the following lower bound,
which improves the best known lower bound (due to Serre, see Sect. 8 in [3]) by
a factor of two:

Theorem 2. Let p > 19 be prime. The number of odd semisimple 2-dimensional
Galois representations mod p which are unramified outside p is bounded below
by p(p− 1)/2.

Algorithm: Enumerate Galois representations mod p up to twist

1. For 4 ≤ k ≤ p+ 1:

(a) Compute a basis for the space Mk.
(b) Decompose the space into Hecke eigenspaces.
(c) For each eigenform, compute the eigenvalue aℓ of Tℓ for primes ℓ up to

the bound from Theorem 1. Store (k, [aℓ]).

5 From Sect. 8 of [3]: “[. . . ] there are only finitely many semisimple 2-dimensional
mod p representations of Gal(Q/Q) of bounded (prime-to-p Artin) conductor. It will
be of interest to get quantitative refinements of this.”



Enumerating Galois Representations in Sage 3

2. Remove duplicates: given (k1, [aℓ]) and (k2, [bℓ]) such that k1 + k2 = p + 1
or p+ 3, check whether [bℓ] is a twist of [aℓ].

This creates the list of equivalence classes (up to twist) of Hecke eigensystems
mod p. It is now straightforward to apply the twist operation to each list element
and generate the list of all Hecke eigensystems.

3 Sage Implementation and Results

Our task requires computing the action of Hecke operators on spaces of modular
forms of high weight. Sage [8] offers several implementations of these spaces for
arbitrary levels. We have initially used modular symbols over finite fields for
generating the lists of eigenforms, but this method becomes quite slow as the
weight increases. Restricting to level 1 allows us to take advantage of a much
faster way of working with these spaces: the Victor Miller basis (see Sect. 2.3
in [7] for the properties and the algorithm Sage uses to compute this basis).

We then use one Hecke operator Tℓ at a time to decompose the space Mk into
eigenspaces. This requires (at most) the first k/12 primes ℓ (see the appendix
of [6]).

We have run the Sage implementation of our algorithm for all primes up
to 211 (see Table 1). Apart from keeping track of the number of equivalence
classes of eigensystems and the total number of eigensystems, we save the list
of equivalence classes; given this it is very easy to take twists and generate the
entire list.

p number p number p number p number p number p number

2 1 23 264 59 4234 97 19200 137 53992 179 119705
3 1 29 532 61 4800 101 21600 139 55752 181 124020
5 4 31 630 67 6237 103 22797 149 69264 191 145445
7 9 37 1044 71 7420 107 25546 151 71700 193 150144

11 35 41 1480 73 8136 109 27216 157 80340 197 160132
13 48 43 1701 79 10257 113 30240 163 90477 199 164637
17 112 47 2185 83 12054 127 42903 167 97276 211 196560
19 153 53 3172 89 14784 131 46735 173 108016

Table 1. Number of Galois representations mod p

Khare guesses in [3] that the number of Galois representations of the type
we are considering should be asymptotic to p3/48. There are two phenomena
that can contribute to the actual number being smaller than the guess: (i) the
existence of “companion forms”, which in our context appear as duplicate equiv-
alence classes of eigenforms; (ii) the failure of “multiplicity one” for Hecke eigen-
values mod p, which results in some spacesMk not contributing their dimension’s
worth of eigenforms. In the range of our computations, the actual number of rep-
resentations stays very close to the best known upper bound6, suggesting that
the two phenomena are indeed quite rare. We expect this trend to be confirmed
by further computations.

6 For instance, for p = 211 the quotient between the actual number (196560) and the
upper bound (196665) is about 0.9995.
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