Skip to main content

Enumerating Galois Representations in Sage

  • Conference paper
Mathematical Software – ICMS 2010 (ICMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Included in the following conference series:

  • 1795 Accesses

Abstract

We present an algorithm for enumerating all odd semisimple two-dimensional mod p Galois representations unramified outside p. We also discuss the implementation of this algorithm in Sage and give a summary of the results we obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Citro, C., Ghitza, A.: Computing level 1 Hecke eigensystems (mod p) (preprint)

    Google Scholar 

  2. Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Khare, C.: Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22(1), 75–100 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009), http://dx.doi.org/10.1007/s00222-009-0205-7

    Article  MATH  MathSciNet  Google Scholar 

  5. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009), http://dx.doi.org/10.1007/s00222-009-0206-6

    Article  MATH  MathSciNet  Google Scholar 

  6. Lario, J.C., Schoof, R.: Some computations with Hecke rings and deformation rings. Experiment. Math. 11(2), 303–311 (2002), http://projecteuclid.org/getRecord?id=euclid.em/1062621223 ; with an appendix by Amod Agashe and William Stein

  7. Stein, W.: Modular forms, a computational approach. In: Graduate Studies in Mathematics, vol. 79. American Mathematical Society, Providence (2007); With an appendix by Paul E. Gunnells

    Google Scholar 

  8. Stein, W., et al.: Sage Mathematics Software (Version 4.4.1). The Sage Development Team (2010), http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Citro, C., Ghitza, A. (2010). Enumerating Galois Representations in Sage. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics