Skip to main content

Generating Smooth Lattice Polytopes

  • Conference paper
Mathematical Software – ICMS 2010 (ICMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Included in the following conference series:

Abstract

A lattice polytope P is the convex hull of finitely many lattice points in ℤd. It is smooth if each cone in the normal fan is unimodular. It has recently been shown that in fixed dimension the number of lattice equivalence classes of smooth lattice polytopes in dimension d with at most N lattice points is finite. We describe an algorithm to compute a representative in each equivalence class, and report on results in dimension 2 and 3 for N ≤ 12. Our algorithm is implemented as an extension to the software system polymake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aardal, K., Weismantel, R., Wolsey, L.A.: Non-standard approaches to integer programming. Discrete Applied Mathematics 123(1-3), 5–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Batyrev, V.: On the classification of toric Fano 4-folds. Journal of Mathematical Sciences 94(1), 1021–1050 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batyrev, V., Kreuzer, M.: Integral cohomology and mirror symmetry for Calabi-Yau 3-folds. In: Mirror symmetry. V. AMS/IP Stud. Adv. Math., vol. 38, pp. 255–270. Amer. Math. Soc., Providence (2006)

    Google Scholar 

  4. Beck, M., Chen, B., Fukshansky, L., Haase, C., Knutson, A., Reznick, B., Robins, S., Schürmann, A.: Problems from the Cottonwood Room. Contemporary Mathematics 374, 179–191 (2005)

    Google Scholar 

  5. Bogart, T., Haase, C., Hering, M., Lorenz, B., MacLagan, D., Nill, B., Paffenholz, A., Santos, F., Schenck, H.: Few smooth d-polytopes with n lattice points (May 2010) (in preparation)

    Google Scholar 

  6. Bruns, W., Gubeladze, J.: Polytopes, rings, and K-theory. Springer Monographs in Mathematics. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  7. De Loera, J.A., Hemmecke, R., Yoshida, R., Tauzer, J.: lattE, http://www.math.ucdavis.edu/~latte/

  8. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Annals of Statistics 26(1), 363–397 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gawrilow, E., Joswig, M.: polymake, http://www.opt.tu-darmstadt.de/polymake/

  10. Gubeladze, J.: Convex normality of rational polytopes with long edges (December 2009), arxiv.org/abs/0912.1068

    Google Scholar 

  11. Haase, C., Hibi, T., MacLagan, D. (eds.): Mini-Workshop: Projective normality of smooth toric varieties, Oberwolfach reports, vol. 4 (2007)

    Google Scholar 

  12. Haase, C., Nill, B., Paffenholz, A., Santos, F.: Lattice points in Minkowski sums. Electronic Journal of Combinatorics 15 (2008)

    Google Scholar 

  13. Haase, C., Paffenholz, A.: Quadratic Gröbner bases for smooth 3 x 3 transportation polytopes. Journal of Algebraic Combinatorics 30(4) (2009)

    Google Scholar 

  14. Haase, C., Schicho, J.: Lattice polygons and the number 2i + 7. American Mathematical Monthly 116(2), 151–165 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Joswig, M., Müller, B., Paffenholz, A.: Polymake and lattice polytopes. In: DMTCS Proceedings of FPSAC (February 2009)

    Google Scholar 

  16. Kleinschmidt, P.: A classification of toric varieties with few generators. Aequationes Mathematicae 35(2-3), 254–266 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra. Communications in Mathematical Physics 185(2), 495–508 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kreuzer, M., Skarke, H.: PALP: A package for analyzing lattice polytopes with applications to toric geometry (April 2002), http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html

  19. Lorenz, B.: Generating smooth polytopes - extension for polymake, http://ehrhart.math.fu-berlin.de/people/benmuell/classification.html

  20. Lorenz, B.: Classification of smooth lattice polytopes with few lattice points. Diploma thesis (2010), arxiv.org/abs/1001.0514

    Google Scholar 

  21. Lutz, F.: The manifold page (April 2010), http://www.math.tu-berlin.de/diskregeom/stellar/

  22. McDuff, D.: Displacing lagrangian toric fibers via probes (April 2009), arxiv.org/abs/0904.1686

    Google Scholar 

  23. Nill, B., Paffenholz, A.: Examples of non-symmetric Kähler-Einstein toric Fano manifolds (May 2009), arxiv.org/abs/0905.2054

    Google Scholar 

  24. Øbro, M.: An algorithm for the classification of smooth Fano polytopes (April 2007), arxiv.org/abs/0704.0049

    Google Scholar 

  25. Oda, T.: Convex Bodies and Algebraic Geometry. In: An Introduction to the Theory of Toric Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Heidelberg (1987)

    Google Scholar 

  26. Oda, T.: Problems on Minkowski sums of convex lattice polytopes (December 2008), arxiv.org/abs/0812.1418

    Google Scholar 

  27. Ohsugi, H., Hibi, T.: Unimodular triangulations and coverings of configurations arising from root systems. J. Algebr. Comb. 14(3), 199–219 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sturmfels, B.: Equations defining toric varieties. In: Kollár, J. (ed.) Algebraic geometry. Proc. Summer Research Institute, Santa Cruz, CA, USA, July 9-29 (1995); Proc. Symp. Pure Math., vol. 62, pp. 437–449. AMS, Providence (1997)

    Google Scholar 

  29. Włodarczyk, J.: Toroidal varieties and the weak factorization theorem. Inventiones Mathematicae 154(2), 223–331 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haase, C., Lorenz, B., Paffenholz, A. (2010). Generating Smooth Lattice Polytopes. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics