Skip to main content

Stochastic Stability and Bifurcation Analysis on Hopfield Neural Networks with Noise

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

A stochastic differential equation modelling a Hopfield neural network with two neurons is investigated. Its dynamics are studied in terms of local stability analysis and Hopf bifurcation analysis. By analyzing the Lyapunov exponent, invariant measure and singular boundary theory , its nonlinear stability is investigated and Hopf bifurcations are demonstrated. The stability and direction of the Hopf bifurcation are determined from the dynamical and phenomenological points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  2. Bellair, J., Campbell, S., van den Driessche, P.: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56, 245–255 (1996)

    Article  MATH  Google Scholar 

  3. Cao, J., Feng, G., Wang, Y.: Multistability and multiperiodicity of delayed Cohen-Grossberg neural networks with a general class of activation functions. Physica D 237 (2008)

    Google Scholar 

  4. Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255–272 (1999)

    Article  MATH  Google Scholar 

  5. Zou, R., Huang, L., Chen, Y.: Linear stability and Hopf bifurcation in a three-unit neural network with two delays. Neurocomputing 70, 219–228 (2006)

    Article  Google Scholar 

  6. Song, Y., Han, M., Wei, J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D 200, 185–204 (2005)

    Article  MATH  Google Scholar 

  7. Huang, H., Daniel, W., Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans. 52, 251–265 (2005)

    Article  Google Scholar 

  8. Haykin, S.: Neural networks. Prentice-Hall, New Jersey (1994)

    MATH  Google Scholar 

  9. Blythe, S., Mao, X., Liao, X.: Sability of stochastic delay neural networks. Journal of the Franklin Institute 338, 481–495 (2001)

    Article  MATH  Google Scholar 

  10. Wang, Z., Lauria, S., Fang, J., Liu, X.: Exponential stability of uncertain stochastic neural networks with mixed time-delays. Chaos, Solitons and Fractals 32, 62–72 (2007)

    Article  MATH  Google Scholar 

  11. Zhang, Y., Yue, D.: Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay. Neurocomputing 72, 1265–1273 (2009)

    Article  Google Scholar 

  12. Du, B., Lam, J.: Stability analysis of static recurrent neural networks using delay-partitioning and projection. Neural Networks 22, 343–347 (2009)

    Article  MATH  Google Scholar 

  13. Wang, G., Cao, J., Wang, L.: Global dissipativity of stochastic neural networks with time delay. Journal of the Franklin Institute(2009) (accepted)

    Google Scholar 

  14. Mao, X.: Exponential Stability of Stochastic Differential Equations. Marcel Dekker, Inc., New York (1997)

    MATH  Google Scholar 

  15. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  16. Zhu, W.: Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation. Science Press, Beijing (2003)

    Google Scholar 

  17. Shayer, L., Campbell, S.: Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700 (2000)

    Article  MATH  Google Scholar 

  18. Lin, Y., Lemmert, R., Volkmann, P.: Bifurcation of periodic solution in a three-unit neural network with delay. Acta. Math. Appl. Sin. 17, 375–382 (2001)

    Article  MATH  Google Scholar 

  19. Cao, J., Xiao, M.: Stability and Hopf Bifurcation in a Simplified BAM Neural Network With Two Time Delays. IEEE Trans. Neurl. Networks 18, 416–430 (2007)

    Article  Google Scholar 

  20. Sun, C., Han, M.: Global Hopf bifurcation analysis on a BAM neural network with delays. Math. Comput. Modelling 45, 61–67 (2007)

    Article  MATH  Google Scholar 

  21. Olien, L., Bellair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102, 349–363 (1997)

    Article  MATH  Google Scholar 

  22. Potapov, A., Ali, M.: Robust chaos in neural networks. Phys. Lett. A 227, 310–322 (2000)

    Article  MATH  Google Scholar 

  23. Liao, X., Wong, K., Wu, Z.: Bifurcation analysis in a two neuron system with continuously distributed delays. Physica D 149, 123–141 (2001)

    Article  MATH  Google Scholar 

  24. Khasminskii, R.: On the principle of averaging for Ito’ stochastic differential equations. Kybernetika(Prague) 4, 260–279 (1968)

    Google Scholar 

  25. Lin, Y., Cai, G.: Probabilistic Structural Dynamics. Mcgraw-Hill Professional Publishing, New York (2004)

    Google Scholar 

  26. Arnold, L.: Random Dynamical Systems. Springer, New york (1998)

    Book  MATH  Google Scholar 

  27. Namachchivaya, N.: Stochastic bifurcation. Applied Mathematics and Computation 38, 101–159 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, X., Huang, Z., Tan, W. (2010). Stochastic Stability and Bifurcation Analysis on Hopfield Neural Networks with Noise. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science, vol 6329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15597-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15597-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15596-3

  • Online ISBN: 978-3-642-15597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics