Skip to main content

A Fuzzy-PID Depth Control Method with Overshoot Suppression for Underwater Vehicle

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

This paper presents an underwater vehicle depth fuzzy-PID control method based on overshoot prediction. The underwater vehicle in the shallow waters is affected by the inevitable surge. In order to achieve reliable and stable depth control, this paper realizes the depth and overshoot forecasts by calculating quadratic equation with depth error acceleration and depth error change rate to derive the overshoot time possibility. With this time possibility and depth error, the fuzzy controller calculates the PID controller parameters, and then the underwater vehicle completes the fast and non-overshoot depth control. The simulation results show that the method is effective and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silvia, M.Z., Giuseppe, C.: Remotely operated vehicle depth control. Control Engineering Practice 11, 453–459 (2003)

    Article  Google Scholar 

  2. Lee, P.M., Hong, S.W., Lim, Y.K., Lee, C.-M., Jeon, B.H., Park, J.W.: Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 388–395 (1999)

    Google Scholar 

  3. Shi, X.C., Xiong, H.S., Wang, C.G., Chang, Z.H.: A New Model of Fuzzy CMAC Network with Application to the Motion Control of AUV. In: Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, pp. 2173–2178 (2005)

    Google Scholar 

  4. Song, F., Smith, S.M.: Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: MTS/IEEE Oceans, pp. 835–840 (2000)

    Google Scholar 

  5. Bin, X., Norimitsu, S., Shunmugham, R.P., Fred, P.: A Fuzzy Controller for Underwater Vehicle-Manipulator Systems. In: MTS/IEEE Oceans, pp. 1110–1115 (2005)

    Google Scholar 

  6. Lin, C.K.: Adaptive Critic Control of Autonomous Underwater Vehicles Using Neural Networks. In: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, pp. 122–127 (2006)

    Google Scholar 

  7. Fossen, T.I., Sagatun, S.I.: Adaptive control of nonlinear systems:A case study of underwater robotic systems. Journal of Robotic Systems, 339–342 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, Z., Luojun, He, Q. (2010). A Fuzzy-PID Depth Control Method with Overshoot Suppression for Underwater Vehicle. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science, vol 6329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15597-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15597-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15596-3

  • Online ISBN: 978-3-642-15597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics