Abstract
This chapter describes the application of evolutionary algorithms to induce predictive models of customer behavior in a business environment. Predictive models are expressed as fuzzy rule bases, which have the interesting property of being easy to interpret for a human expert, while providing satisfactory accuracy. The details of an island-based distributed evolutionary algorithm for fuzzy model induction are presented and a case study is used to illustrate the effectiveness of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armstrong, J.S., Brodie, R.J., McIntyre, S.H.: Forecasting methods for marketing: Review of empirical research. International Journal of Forecasting 3, 335–376 (1987)
Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press, Oxford (1996)
Bäck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation. IoP Publishing, Bristol (2000)
Beretta, M., Tettamanzi, A.: Learning fuzzy classifiers with evolutionary algorithms. In: Bonarini, G.P.A., Masulli, F. (eds.) Soft Computing Applications, pp. 1–10. Physica Verlag, Heidelberg (2003)
Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2001)
Cantú-Paz, E.: A survey of parallel genetic algorithms. Tech. Rep. IlliGAL 97003, University of Illinois at Urbana-Champaign (1997), http://citeseer.ist.psu.edu/article/cantu-paz97survey.html
da Costa Pereira, C., Tettamanzi, A.: Fuzzy-evolutionary modeling for single-position day trading. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100, pp. 131–159. Springer, Berlin (2008)
da Costa Pereira, C., Tettamanzi, A.G.B.: Horizontal generalization properties of fuzzy rule-based trading models. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 93–102. Springer, Heidelberg (2008)
DeJong, K.A.: Evolutionary Computation: A unified approach. MIT Press, Cambridge (2002)
del Jesus, M.J., Gonzalez, P., Herrera, F., Mesonero, M.: Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems 15(4), 578–592 (2007)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
Hellendoorn, H., Thomas, C.: Defuzzification in fuzzy controllers. Intelligent and Fuzzy Systems 1, 109–123 (1993)
Kaufmann, M., Meier, A.: An inductive fuzzy classification approach applied to individual marketing. In: NAFIPS 2009, Cincinnati, Ohio (2009)
Li, S.: The development of a hybrid intelligent system for developing marketing strategy. Decision Support Systems 27(4), 395–409 (2000)
Mamdani, E.H.: Advances in linguistic synthesis of fuzzy controllers. International Journal of Man Machine Studies 8, 669–678 (1976)
Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1989)
Mühlenbein, H.: Parallel genetic algorithms, population genetics and combinatorial optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 416–421. Morgan Kaufmann, San Mateo (1989)
Poluzzi, R., Rizzotto, G.G.: An evolutionary algorithm for fuzzy controller synthesis and optimization based on SGS-Thomson’s W.A.R.P. fuzzy processor. In: Sanchez, L.A.Z.E., Shibata, T. (eds.) Genetic algorithms and fuzzy logic systems: Soft computing perspectives. World Scientific, Singapore (1996)
Ross, T.: Fuzzy Logic with Engineering Applications. McGraw-Hill, New York (1995)
Sammartino, L., Simonov, M., Soroldoni, M., Tettamanzi, A.: Gamut: A system for customer modeling based on evolutionary algorithms. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), Las Vegas, Nevada, USA, July 8-12, p. 758. Morgan Kaufmann, San Francisco (2000)
Setnes, M., Kaymak, U.: Fuzzy modeling of client preference from large data sets: An application to target selection in direct marketing. IEEE Transactions on Fuzzy Systems 9(1), 153–163 (2001)
Tettamanzi, A.: An evolutionary algorithm for fuzzy controller synthesis and optimization. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5/5, pp. 4021–4026 (1995) IEEE Systems, Man, and Cybernetics Society
Tettamanzi, A., Sammartino, L., Simonov, M., Soroldoni, M., Beretta, M.: Learning environment for life time value calculation of customers in insurance domain. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1251–1262. Springer, Heidelberg (2004)
Tettamanzi, A.G.B., Carlesi, M., Pannese, L., Santalmasi, M.: Business intelligence for strategic marketing: Predictive modelling of customer behaviour using fuzzy logic and evolutionary algorithms. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 233–240. Springer, Heidelberg (2007)
Wedel, M., Steenkamp, J.B.E.M.: A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. Journal of Marketing Research XXVIII, 385–396 (1991)
Werro, N., Stormer, H., Meier, A.: Personalized discount—a fuzzy logic approach. In: Funabashi, M., Grzech, A. (eds.) Challenges of Expanding Internet: E-Commerce, E-Business, and E-Government. 5th IFIP Conference e-Commerce, e-Business, and e-Government (I3E 2005), Poznań, Poland. IFIP, vol. 189, pp. 375–387 (2005)
Werro, N., Stormer, H., Meier, A.: A hierarchical fuzzy classification of online customers. In: IEEE International Conference on e-Business Engineering (ICEBE 2006). Shanghai (2006)
Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On separability, population size and convergence. Journal of Computing and Information Technology 7(1), 33–47 (1999)
Yager, R.R.: Targeted e-commerce marketing using fuzzy intelligent agents. IEEE Intelligent Systems 15(6), 42–45 (2000)
Yao, X., Xu, Y.: Recent advances in evolutionary computation. Computer Science and Technology 21(1), 1–18 (2006)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, i–ii. Information Science 8, 199–249, 301–357 (1975)
Zadeh, L.A.: The calculus of fuzzy if-then rules. AI Expert 7(3), 22–27 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
da Costa Pereira, C., Tettamanzi, A.G.B. (2010). Fuzzy–Evolutionary Modeling of Customer Behavior for Business Intelligence. In: Casillas, J., Martínez-López, F.J. (eds) Marketing Intelligent Systems Using Soft Computing. Studies in Fuzziness and Soft Computing, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15606-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15606-9_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15605-2
Online ISBN: 978-3-642-15606-9
eBook Packages: EngineeringEngineering (R0)