Skip to main content

Automatic and Reliable Extraction of Dendrite Backbone from Optical Microscopy Images

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

The morphology and structure of 3D dendritic backbones are the essential to understand the neuronal circuitry and behaviors in the neurodegenerative diseases. As a big challenge, the research of extraction of dendritic backbones using image processing and analysis technology has attracted many computational scientists. This paper proposes a reliable and robust approach for automatically extract dendritic backbones in 3D optical microscopy images. Our systematic scheme is a gradient vector field based skeletonization approach. We first use self-snake based nonlinear diffusion, adaptive segmentation to smooth noise and segment the neuron object. Then we propose a hierarchical skeleton points detection algorithm (HSPD) using the measurement criteria of low divergence and high iso-surface principle curvature. We further create a minimum spanning tree to represent and establish effective connections among skeleton points and prune small and spurious branches. To improve the robustness and reliability, the dendrite backbones are refined by B-Spline kernel based data fitting. Experimental results on different datasets demonstrate that our approach has high reliability, good robustness and requires less user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. London, M., Hausser, M.: Dendritic computation. Annual Review Neuroscience 28(1), 503–532 (2005)

    Article  Google Scholar 

  2. Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G., Turner, J.N., Roysam, B.: Rapid Automated Threedimensional Tracing of Neurons from Confocal Image Stacks. IEEE Transactions on Information Technology in Biomedicine 6(2), 171–187

    Google Scholar 

  3. Xu, X., Wong, S.T.C.: Wong, Optical Microscopic Image Processing of Dendritic Spines Morphology. IEEE Signal Processing Magzine 23(4), 132–135 (2006)

    Article  MathSciNet  Google Scholar 

  4. Firdaus, J., Kishore, M., Xu, X., Raghu, M., Kun, H., Wong, S.T.C.: Robust 3D reconstruction and identification of dendritic spines from optical microscopy imaging. Medical Image Analysis 13, 167–179 (2009)

    Article  Google Scholar 

  5. Yuan, X., Trachtenberg, J.T., Potter, S.M., Roysam, B.: MDL Constrained 3-D Grayscale Skeletonization Algorithm for Automated Extraction of Dendrites and Spines from Fluorescence Confocal Images. Neuroinformatics 7(4), 213–232 (2009)

    Article  Google Scholar 

  6. Cheng, J., Zhou, X., Miller, E., Witt, R.M., Zhu, J., Sabatini, B.L., Wong, S.T.C.: A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy. J. Neurosci Methods 165(1), 122–134 (2007)

    Article  Google Scholar 

  7. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  8. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi For Mulation. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. El-Fallah, A.I., Ford, G.E.: The evolution of mean curvature in image filtering. In: Proc. IEEE Internat. Conf. on Image Processing (1), pp. 298–302 (1994)

    Google Scholar 

  10. De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., Svoboda, K.: Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron. 49(6), 780–783 (2006)

    Article  Google Scholar 

  11. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Transaction on Biomedical Engineering 57(4), 841–852 (2010)

    Article  Google Scholar 

  12. Boykov, Y., Kolmogorov, V.: Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  13. Bouix, S., Siddiqi, K.: Divergence-Based Medial Surfaces. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 603–618. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 21(11), 945–955 (2005)

    Article  Google Scholar 

  15. Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: Curvature measurement of 3D objects: evaluation and comparison of three methods. In: International Conference on Image Processing (ICIP 1995), vol. 2, pp. 2627–2631 (1995)

    Google Scholar 

  16. Forssell, L.K., Cohen, S.D.: Using line integral convolution for flow visualization: Curvilinear grids, variable-speed animation, and unsteady flows. IEEE Transactions on Visualizationand Computer Graphics 1(2), 133–141 (1995)

    Article  Google Scholar 

  17. Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual, p. 12. Pearson Education Inc., London (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, L., Yuan, X., Galbreath, Z., Roysam, B. (2010). Automatic and Reliable Extraction of Dendrite Backbone from Optical Microscopy Images. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics