Skip to main content

Magnetic Induction Tomography: Simulation Study on the Forward Problem

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Magnetic induction tomography (MIT) is a kind of electromagnetic detecting and imaging technology, which is considered to be useful for diagnoses of the intracranial hemorrhage. The forward problem is the eddy current problem which is useful for improving the resolution of the measurement system and provides basic data for the inverse problem of image reconstruction. Simulation study on the forward problem in this paper includes four parts: illustration of the concept of a new MIT system, establishment of a mathematical model for the forward problem, creation of the human brain model and image visualization of the intracranial hemorrhage. In the results, the mathematical model was established with the edge finite element method, and MIT image visualization was realized under the real human brain 3D model. This study provides a foundation for MIT in the future clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zolgharni, M., Ledger, P.D., Griffiths, H.: Forward modeling of magnetic induction tomography: a sensitivity study for detecting haemorrhagic cerebral stroke. Med. Biol. Eng. Comput. 47, 1301–1313 (2009)

    Article  Google Scholar 

  2. Zolgharni, M., Ledger, P.D., Armitage, D.W.: Imaging Cerebral Haemorrhage with Magnetic Induction Tomography: Numerical Modelling. Physiol. Meas. 30, S187–S200 (2009)

    Article  Google Scholar 

  3. Hollaus, K., Magele, C., Merwa, R., Scharfetter, H.: Numerical Simulation of the Eddy Current Problem in Magnetic Induction Tomography for Biomedical Applications by Edge Elements. IEEE Trans. Magn. 40(2), 623–626 (2004)

    Article  Google Scholar 

  4. Merwa, R., Hollaus, K., Brandstatter, B.: Numerical solution of the general 3D eddy current problem for magnetic induction tomography. Physiol. Meas. 24, 545–554 (2003)

    Article  Google Scholar 

  5. Morris, A., Griffiths, H., Gough, W.: A Numerical Model for Magnetic Induction Tomographic Measurements in Biological Tissues. Physiol. Meas. 22, 113–119 (2001)

    Article  Google Scholar 

  6. Scharfetter, H., Hollaus, K., Rosell-Ferrer, J.: Single-step 3-D image reconstruction in magnetic induction tomography: theoretical limits of spatial resolution and contrast to noise ratio. Annals of Biomedical Engineering 34(11), 1786–1798 (2006)

    Article  Google Scholar 

  7. Xu, Z., Luo, H., He, W.: A multi-channel magnetic induction tomography measurement system for human brain model imaging. Physiol. Meas. 30, S175–S186 (2009)

    Article  Google Scholar 

  8. Biro, O.: Edge Element Formulations of Eddy Current Problems. Comput. Methods Appl. Mech. Engrg. 169, 391–405 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mingzhong, R., Bangding, T., Jian, H.: Edge Elements with Applications to Calculation of Electromagnetic Fields. Proceedings of the CSEE 14(5), 63–69 (1994)

    Google Scholar 

  10. Biro, O., Preis, K., Vrisk, G.: Computation of 3-D magnetostatic fields using a reduced scalar potential. IEEE Trans. Magn. 29(2), 1332–1359 (1993)

    Google Scholar 

  11. Parallel computing technique, http://www.mathworks.com

  12. MRI data, http://www.mayo.edu

  13. BrainSuite, http://www.loni.ucla.edu/Software

  14. BtainStorm, http://neuroimage.usc.edu/brainstorm

  15. Biro, O., Preis, K.: On the Use of the Magnetic Vector Potential in the Finite Element Analysis of Three-Dimensional Eddy Currents. IEEE Trans. Magn. 25(4), 3145–3159 (1999)

    Article  Google Scholar 

  16. Sandwell, D.T.: Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophysical Research Letters 14(2), 139–142 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, W., Song, X., Xu, Z., Luo, H. (2010). Magnetic Induction Tomography: Simulation Study on the Forward Problem. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics