Skip to main content

The SEM Statistical Mixture Model of Segmentation Algorithm of Brain Vessel Image

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

The brain MRI images are processed with statistical analysis technology, and then the accuracy of segmentation is improved by the random assortment iteration .First the MIP algorithm is applied to decrease the quantity of mixing elements. Then the Gaussian Mixture Model is put forward to fit the stochastic distribution of the brain vessels and brain tissue. Finally, the SEM algorithm is adopted to estimate the parameters of Gaussian Mixture Model. The feasibility and validity of the model is verified by the experiment. With the model, small branches of the brain vessel can be segmented, the speed of the convergent is improved and local minima are avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirbas, C., Quek, F.: A Review of Vessel Extraction Techniques and Algorithms. ACM Computing Surveys 36(2), 81–121 (2004)

    Article  Google Scholar 

  2. Dempster, A.P.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Carson, C., Belonqie, S., Greenspan, H., Malik, J.: Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(08), 1026–1038 (2002)

    Article  Google Scholar 

  4. Masson, P., Pieczynski, W.: SEM algorithm and unsupervised statistical segmentation of satellite images. IEEE Transactions on Geoscience and Remote Sensing 31(3), 618–633 (1993)

    Article  Google Scholar 

  5. Shiming, X., Rui, C., Yu, D., Hua, L.: Motion Segmentation via On-line Gaussian Mixture Model and Texture. Journal of Computer Aided Design & Computer Graphics 17(07), 1504–1509 (2005)

    Google Scholar 

  6. Rihua, X., Runsheng, W.: A Range Image Segmentation Algorithm Based on Gaussian Mixture Model. Journal of Software 14(07), 1250–1257 (2003)

    MATH  Google Scholar 

  7. Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging 25(09), 1233–1245 (2006)

    Article  Google Scholar 

  8. Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(09), 1154–1166 (2004)

    Article  Google Scholar 

  9. Blekas, K., Galatsanos, N.P., Likas, A., Lagaris, I.E.: Mixture model analysis of DNA microarray images. IEEE Transactions on Medical Imaging 24(07), 901–909 (2005)

    Article  Google Scholar 

  10. Diplaros, A., Vlassis, N., Gevers, T.: A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Transactions on Neural Networks 18(03), 798–808 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Xu, F., Zhou, M., Wu, Z., Liu, X. (2010). The SEM Statistical Mixture Model of Segmentation Algorithm of Brain Vessel Image. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics