Skip to main content

ICA-Based Automatic Classification of Magnetic Resonance Images from ADNI Data

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

This paper proposes a novel method of automatic classification of magnetic resonance images based on independent component analysis (ICA). The ICA-based method is composed of three steps. First, all magnetic resonance imaging (MRI) scans are aligned and normalized by statistical parametric mapping. Then FastICA is applied to the preprocessed images for extracting specific neuroimaging components as potential classifying feature. Finally, the separated independent coefficients are fed into a classifying machine that discriminates among Alzheimer’s patients, and mild cognitive impairment, and control subjects. In this study, the MRI data is selected from the Alzheimer’s Disease Neuroimaging Initiative databases. The experimental results show that our method can successfully differentiate subjects with Alzheimer’s disease and mild cognitive impairment from normal controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jack, C.R., Bernstein, M.A., et al.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  2. Walhovd, K.B., Fjell, A.M., et al.: Combining MR Imaging, Positron-Emission Tomography, and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease. AJNR Am. J. Neuroradiol. (2010)

    Google Scholar 

  3. Jack, C.R., Petersen, R.C., Obrien, P.C., Tangalos, E.G.: MR-based hippocampal volumetry in the diagnosis of Alzheimers-disease. Neurology 42(1), 183–188 (1992)

    Google Scholar 

  4. Ashburner, J., Friston, K.J.: Voxel-based morphometry - The methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  5. Magnin, B., Mesrob, L., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)

    Article  Google Scholar 

  6. Chupin, M., Gerardin, E., et al.: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6), 579–587 (2009)

    Article  Google Scholar 

  7. Zhou, L., Lieby, P., et al.: Hippocampal shape analysis for Alzheimer’s disease using an efficient hypothesis test and regularized discriminative deformation. Hippocampus 19(6), 533–540 (2009)

    Article  Google Scholar 

  8. Braak, H., Braak, E.: Staging of Alzheimer-related cortical destruction. Int. Psychogeriatr 9(suppl. 1), 257–261 (1997); discussion 69-72

    Article  Google Scholar 

  9. Giesel, F.L., Thomann, P.A., et al.: Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging. European Journal of Radiology (66), 268–273 (2008)

    Google Scholar 

  10. Hua, X., Leow, A.D., et al.: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 43(3), 458–469 (2008)

    Article  Google Scholar 

  11. Xu, L., Pearlson, G., Calhoun, V.D.: Joint source based morphometry identifies linked gray and white matter group differences. Neuroimage 44(3), 777–789 (2009)

    Article  Google Scholar 

  12. Xu, L., Groth, K.M., et al.: Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum. Brain Mapp. 30(3), 711–724 (2009)

    Article  Google Scholar 

  13. Kloppel, S., Stonnington, C.M., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(Pt. 3), 681–690 (2008)

    Article  Google Scholar 

  14. McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: Examining the assumptions. Human Brain Mapping 6(5-6), 368–372 (1998)

    Article  Google Scholar 

  15. Marcus, D.S., et al.: Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  16. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  17. Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical, New York (1988)

    Google Scholar 

  18. Calhoun, V.D., Adali, T., et al.: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping 13(1), 43–53 (2001)

    Article  Google Scholar 

  19. Cortes, C., Vapnik, V.: SUPPORT-VECTOR NETWORKS. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  20. Gutman, B., Wang, Y., et al.: Disease classification with hippocampal shape invariants. Hippocampus 19(6), 572–578 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, W., Chen, X., Xie, H., Huang, X. (2010). ICA-Based Automatic Classification of Magnetic Resonance Images from ADNI Data. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics