Skip to main content

Towards Constraint Optimal Control of Greenhouse Climate

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Greenhouse climate is a multiple coupled variable, nonlinear and uncertain system. It consists of several major environmental factors, such as temperature, humidity, light intensity, and CO2 concentration. In this work, we propose a constraint optimal control approach for greenhouse climate. Instead of modeling greenhouse climate, Q-learning is introduced to search for optimal control strategy through trial-and-error interaction with the dynamic environment. The coupled relations among greenhouse environmental factors are handled by coordinating the different control actions. The reinforcement signal is designed with consideration of the control action costs. To decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm Case Based Reasoning (CBR) is seamlessly incorporated into Q-learning process of the optimal control. The experimental results show this approach is practical, highly effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, F., Chen, J., Zhang, L., Zhan, H.: Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm. In: 9th International Conference on Control, Automation, Robotics and Vision, ICARCV 2006, December 5-8, pp. 1–6 (2006)

    Google Scholar 

  2. Yingxia, L., Shangfeng, D.: Advances of intelligent control algorithm of greenhouse environment in china. Transactions of the CSAE 20(2), 267–272 (2004)

    Google Scholar 

  3. Trigui, M.: A strategy for greenhouse climate control, part I: model development. J. Agric. Engng. Res. 78(4), 407–413 (2000)

    Article  Google Scholar 

  4. Sigrimis, N., King, R.E.: Advances in greenhouse environment control. Computers and Electronics in Agriculture 26(3), 217–219 (2000)

    Article  Google Scholar 

  5. Yanzheng, L., Guanghui, T., Shirong, L.: The Problem of the Control System for Greenhouse Climate. Chinese Agricultural Science Bulletin 23(10), 154–157 (2007)

    Google Scholar 

  6. Setiawan, A., Albright, L.D., Phelan, R.M.: Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control. Comp. Electronics Agric. 26(3), 283–302 (2000)

    Article  Google Scholar 

  7. Boaventura Cunha, J., Couto, C., Ruano, A.E.: Real-time parameter estimation of dynamic temperature models for greenhouse environmental control. Control Engineering Practice 5(10), 1473–1481 (1997)

    Article  Google Scholar 

  8. Pasgianos, G.D., Arvanitis, K.G., Polycarpou, P., Sigrimis, N.: A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture 40(1-3), 153–177 (2003)

    Article  Google Scholar 

  9. Lafont, F., Balmat, J.F.: Optimized fuzzy control of a greenhouse. Fuzzy Sets and Systems 128, 47–59 (2002)

    Article  MathSciNet  Google Scholar 

  10. Nachidi, M., Benzaouia, A., Tadeo, F.: Temperature and humidity control in greenhouses using the Takagi-Sugeno fuzzy model. In: 2006 IEEE International Conference on Control Applications, pp. 2150–2154 (October 2006)

    Google Scholar 

  11. Ferela, P.M., Ruano, A.E.: Choice of RBF model structure for predicting greenhouse inside air temperature. In: 15th Triennial World Congress, Barcelona, Spain (2002)

    Google Scholar 

  12. Sandra, P.: Nonlinear model predictive via feedback linearization of a greenhouse. In: 15th Triennial World Congress, Barcelona, Spain (2002)

    Google Scholar 

  13. Fourati, F., Chtourou, M.: A greenhouse control with feed-forward and recurrent neural networks. Simulation Modeling Practice and Theory 15, 1016–1028 (2007)

    Article  Google Scholar 

  14. Ferreira, P.M., Fariab, E.A., Ruano, A.E.: Neural network models in greenhouse air temperature prediction. Neurocomputing 43, 51–75 (2002)

    Article  MATH  Google Scholar 

  15. Barto, A.G.: Reinforcement learning in the real world. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 3, pp. 25–29.

    Google Scholar 

  16. Watkins, C.J.C.H., Dayan, P.: Technical notes: Q-learning. Machine Learning 82, 39–46 (1992)

    Google Scholar 

  17. Jangmin, O., Lee, J., Zhang, B.-T., et al.: Adaptive stock trading with dynamic asset allocation using reinforcement learning. Information Sciences 176, 2121–2147 (2006)

    Article  MATH  Google Scholar 

  18. Macek, K., Petrovic, I., Peric, N.: A reinforcement learning approach to obstacle avoidance of mobile robots. In: 7th International Workshop on Advanced Motion Control, pp. 462–466 (July 2002)

    Google Scholar 

  19. Whitehead, S.D., Lin, L.-J.: Reinforcement learning of non-Markov decision processes. Artificial Intelligent 73, 271–306 (1995)

    Article  Google Scholar 

  20. Juell, P., Paulson, P.: Case-based systems. IEEE Intelligent Systems (see also IEEE Expert) 18(4), 60–67 (2003)

    Article  Google Scholar 

  21. Brooks, R.A.: Intelligence Without Representation. Artificial Intelligence Journal 47, 139–159 (1991)

    Article  Google Scholar 

  22. Kuo, B.C.: Automatic Control System. Prentice-Hall, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, F., Tang, Y. (2010). Towards Constraint Optimal Control of Greenhouse Climate. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics