
Deriving Safety Cases for Hierarchical Structure in
Model-based Development

Nurlida Basir1, Ewen Denney2, and Bernd Fischer1

1 ECS, University of Southampton, Southampton, SO17 1BJ, UK
(nb206r,b.fischer)@ecs.soton.ac.uk

2 SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA
Ewen.W.Denney@nasa.gov

Abstract. Model-based development and automated code generation are increas-
ingly used for actual production code, in particular in mathematical and engineer-
ing domains. However, since code generators are typically not qualified, there is
no guarantee that their output satisfies the system requirements, or is even safe.
Here we present an approach to systematically derive safety cases that argue
along the hierarchical structure in model-based development. The safety cases
are constructed mechanically using a formal analysis, based on automated the-
orem proving, of the automatically generated code. The analysis recovers the
model structure and component hierarchy from the code, providing independent
assurance of both code and model. It identifies how the given system safety re-
quirements are broken down into component requirements, and where they are ul-
timately established, thus establishing a hierarchy of requirements that is aligned
with the hierarchical model structure. The derived safety cases reflect the results
of the analysis, and provide a high-level argument that traces the requirements
on the model via the inferred model structure to the code. We illustrate our ap-
proach on flight code generated from hierarchical Simulink models by Real-Time
Workshop.
Keywords: Model-based software development, automated code generation, for-
mal proofs, formal analysis, safety case, automated theorem proving.

1 Introduction

Model-based development and automated code generation are increasingly used for ac-
tual production code, in particular in mathematical and engineering domains. For exam-
ple, NASA’s Project Constellation uses Real-Time Workshop (RTW) for its Guidance,
Navigation, and Control (GN&C) systems and subsystems. However, since code gener-
ators are typically not qualified, there is no guarantee that their output is correct or even
safe, and additional evidence of its safety is required. In previous work [5], we have thus
constructed safety cases [19] from information collected during a formal verification of
the generated code. We also have constructed safety cases that correspond to the formal
proofs found by automated theorem provers of the verification conditions, and reveal
the underlying proof argumentation structure and top-level assumptions [6].

This paper is a continuation of our previous work, but here we systematically derive
safety cases that argue along the hierarchical structure in model-based development.

A safety case is a structured argument, supported by a body of evidence, which pro-
vides a convincing and valid justification that a system is acceptably safe for a given
application in a given operating environment [19]. In the Goal Structuring Notation
(GSN) [13], which we use as technique to explicitly represent the logical flow of a
safety argument, the main construction elements of a safety case are goals (which are
the safety claims to be met by the system), strategies (which describe how a claim is
addressed by evidence or further subgoals), evidence, and assumptions. In our work, the
safety cases are constructed mechanically using a formal analysis, based on automated
theorem proving, of the automatically generated code. Goals are thus given by the for-
mal safety requirements on the model, which express as logical formulas the properties
that the (software sub-) system’s output signals must satisfy for the (overall) system to
be safe. Strategies are the high-level steps of the formal analysis (e.g., decomposing the
set of requirements, or decomposing the system into components) while the evidence
comes from the low-level proofs of the verification conditions. Assumptions are log-
ical formulas which express the properties that the input signals must satisfy for the
(overall) argument to be valid; they are thus dual to requirements and, hence, goals.

We illustrate our work using the verification of two safety requirements for a space-
craft navigation system that was generated from a Simulink model by Real-Time Work-
shop [3]. The requirements determine the interface between the software system safety
cases (where they are the root elements) and the subsystem safety case (where they are
leaf nodes). Each requirement induces a verified abstraction or slice of the system archi-
tecture. The formal analysis recovers the hierarchical structure of these slices from the
code and identifies requirements that rely on any externally given assumptions. This en-
ables us to identify how the system safety requirements are broken down into low-level
component requirements and distributed over the system components, and thus also to
identify where the requirements are ultimately established, resulting in a hierarchy of
requirements that is aligned with the hierarchy of the components.

We use safety cases to reflect the results of the program analysis, and provide a high-
level argument that explains how the system slices establish the corresponding safety
requirements. The safety cases help tracing the safety requirements from the model via
the inferred system structure to the code, thus providing independent assurance of both
model and code. They also provide a traceable safety argument that shows in particular
where the code, subsystem, and system depend on any internal and external assump-
tions. We believe they highlight the claims, key safety requirements, and evidence that
are required to understand and trust generated code, which is essential for the use of
code generators in safety-critical applications.

2 Background

2.1 Model-based Software Development

Model-based software development comprises a number of techniques that focus on
creating and transforming domain-specific abstractions or models rather than algo-
rithms or even code. In model-based design [3, 18], mathematical or, more often, vi-
sual methods are used to create an initial model of the system design. It is commonly

used in the control systems domain, where block diagrams provide an accepted no-
tation. Blocks can represent arbitrary computations and can be nested hierarchically,
which helps counter system complexity. They are connected by wires that represent the
flow of signals through the system. A number of academic and commercial tools sup-
port model-based design in this domain. We focus on MathWorks Simulink [3], which
is used by many NASA projects for at least some of their modeling and code develop-
ment, particularly for GN&C problems. Simulink comes with a large library of standard
modeling blocks that provide mathematical operations and signal routing suitable for
control systems and complex operations.

Model-based code generation [16, 18] complements model-based design, and trans-
lates specifications in the form of a model into a program in a high-level programming
language such as C or ADA. The translation process can be organized as a sequence
of model transformations, where the last model is equivalent to the program. The final
source code generation can then be realized with a simple template engine. Here we
focus on a commercial generator, MathWorks Real-Time Workshop Embedded Coder
[3]. Real-Time Workshop generates ANSI/ISO compliant C and C++ code from Math-
Works Simulink and Stateflow models. Embedded Coder adds various features, such as
optimization, which are useful for generating C code tuned for embedded devices.

2.2 Formal Program Analysis using AutoCert

The techniques described here are based on the AUTOCERT code analysis tool [9],
which takes a set of requirements, and formally verifies that the code satisfies them.
AUTOCERT can verify execution-safety requirements (e.g., array bounds), as well as
individual mathematically specified requirements. AUTOCERT thus supports certifica-
tion by formally verifying that auto-generated code is free of certain safety violations
and complies with domain-specific safety requirements as those mentioned.

AUTOCERT follows the Hoare logic approach to verification, which needs annota-
tions, i.e., logical assertions of program properties, at key locations in the code. These
annotations are constructed automatically by a post-generation inference phase that ex-
ploits the idiomatic nature of auto-generated code and is driven by a generator- and
domain-specific set of idioms. The inference algorithm builds an abstracted control-
flow graph (CFG), collapsing the code idioms into single nodes. It then traverses the
CFG from use nodes (where a requirement must hold) backwards to all corresponding
definitions (where the relevant properties are established) and annotates the statements
along the paths as required [9]. The definitions typically correspond to model blocks
(more precisely, to parts of the code implementing a block), which can use assumptions
on the properties of their input signal to establish the requirement. Hence, the inference
algorithm must recurse over the variables corresponding to the input signals, derive
the assumptions, and establish them as new requirements. This chain of requirements
on variables and their definitions constitutes the backbone of our safety argument. As
byproduct, the inference derives the component interfaces (i.e., the requirements placed
on them, and the assumptions made by them) as well as the system’s overall assump-
tions, which need to be established by its context. A verification condition generator
(VCG) processes the annotated code, feeding a set of verification conditions (VCs) into
an automated theorem prover (ATP); their proofs guarantee that the code satisfies the

����
����� 	����	

����

����
�	
����
���

���

�����
�������
�������
������
���������
����
���

����

�����

����������

	
��������
����

���������
��������

�������������In 1

In 2

In 3

In 4

In 5

In 6

In 7

In 8

Out 1

In 1

In 2

Out 1

In 1

In 2

In 3

In 4

In 5

In 6

In 7

In 8

Out 1

Out 2

Out 3

Out 4
Out 2

Fig. 1. High-level Architecture of Navigation System

requirements and also validate the definitions identified by the analysis, and thus the
derived architecture. In the safety case, the proofs serve as evidence.

During the course of analysis, AUTOCERT records various facts, such as the loca-
tions of uses and definitions, which are later used as input to the safety case generation
process. Here, we extended the existing mechanism to record additional information
from which we can reconstruct the system architecture slices.

2.3 Guidance, Navigation, and Control Systems

Spacecraft are typically decomposed into a number of different systems such as the
power, thermal protection, or guidance, navigation, and control (GN&C) systems [22].
The GN&C system is a necessary element of every spacecraft. Here, we focus on the
Navigation (sub-) system within the GN&C system. It is used to determine a space-
craft’s orientation and position, which is challenging from a safety perspective, due
to its complex and mathematical nature. We give a brief, simplified description of the
system where we also have changed the names of components and signals from the
original.

Navigation (see Fig. 1 for its architecture) takes several input signals, representing
various physical quantities, and computes output signals representing other quantities,
such as Mach number, angular velocity, position in a specified frame of reference, and
so on. Signals are generally represented as floating point numbers or as quaternions
and have an associated physical unit and/or frame which correctness are critical to the
safety of the system. However, the units and frames are usually not made explicit in the
model, and instead are expressed informally in comments and identifiers.

Navigation is comprised of three components, a decision logic that computes a sta-
tus value irrelevant to the requirements we consider here, a frame conversion, and a
state determination. Frame Conversion first converts the frames of the incoming signals

from a vehicle-based coordinate system to an earth-based coordinate system. The trans-
formations of the coordinate systems are done by converting quaternions to direction
cosine matrices (DCMs), applying some matrix algebra, and then converting them back
to quaternions [20]. State Determination then performs the calculations to determine the
vehicle state (e.g., position, attitude, and attitude rate) from these signals. It is defined in
terms of the relevant physical equations. Note that there are no individual blocks within
Navigation, but only within the components and thus all computation happens there.

3 Deriving Safety Cases from the Formal Analysis of Hierarchical
Structure

While Leveson et al. [14] rightly argue that a formal verification of software against
its requirements does not guarantee safety, it is important to note that the safety re-
quirements are not the same as the software requirements specification, even if many
requirements from a software requirements specification do impact safety. Instead, in
this work, we assume that the safety requirements have been established independently,
for example by a hazard analysis of the overall system, and so take them as given.

Here we use requirements on the GN&C as driving example, since the GN&C
is clearly safety-critical, and maintenance of the correct navigation state is therefore
safety-critical. In particular, we require that the navigation state be represented in the
correct coordinate frames, where “correct” has been independently determined.

3.1 Formalization of the Requirements

We illustrate our work using the results of the formal verification of two safety require-
ments for the code generated from the Simulink model of the above navigation system:

(1) The system shall compute a quaternion representing a transformation from the
Earth-Centered Inertial (ECI) frame to the body fixed frame in signal quat3, and

(2) The system shall compute a velocity in the ECI frame in signal vel2.

Since we are working with a formal, logic-based analysis framework, we need to for-
malize these requirements using a domain theory:

(1′) quat3 :: quat(ECI, Body).
(2′) vel2 :: vel(ECI).

Here, ECI and Body are constants denoting the respective frames, quat and vel are
functions denoting transformations of or quantities in those frames, and :: is a predicate
that asserts that the signal represents a transformation between (resp. quantity in) the
required frame(s).

Obviously, the actual formalization of the safety requirements themselves is safety-
relevant: a wrong formalization can invalidate the assurance provided by the proofs [4,
15]. It thus needs to be called out and justified in the safety case.

����������

����������

	
��������
����

��	
���
���	��
�����
���	���
����

����

�����

���	

����

����������

	
��������
����

���������
��������

������
������

Fig. 2. Architecture Slices Recovered for Example Requirements

3.2 Architecture Recovery

In order to certify the requirements on a system, and to build a comprehensible safety
case, we need to know where in the system they are established, and which parts of the
system contribute to them. In the system architecture (Fig. 1) we can see that the first
requirement should be established by Frame Conversion, since the signal quat3 comes
straight out of that component (and similarly for vel2 and State Determination in the
case of the second requirement). However, this view is too simplistic. First, without
looking inside the component models it is not clear whether the requirement is indeed
established within a component, or simply passed through (cf. for example alt in Nav-
igation), and which of the component’s input signals (if any), or more precisely which
assumptions on them, are used in establishing the requirement. However, simply ex-
panding the component models destroys the hierarchical structure of the system. More
importantly, the safety of the system ultimately depends on the safety of the code rather
than the model, but because we cannot trust the code generator to translate the model
correctly we cannot derive any trust from the model.

Instead, we analyze the code and recover the slice of the system architecture that is
relevant to a given safety requirement. We record when the analysis enters resp. leaves a
component (implemented by RTW as a parameter-free procedure), and then remove the
part of the requirements-definition chain that is contained within the component. The
key to obtaining precise architecture slices is to identify situations in which the con-
trol flow just passes through a component, without encountering a definition. In these
cases, we can ignore the component altogether. We then assemble the slices from the
signals involved in the recorded requirements-definitions chains and from the retained
component.

Fig. 2 shows the architecture slices recovered for both requirements. In both cases,
the irrelevant Decision Logic component has been removed by the analysis. For the first
requirement, it has further identified that Quat3 is unaffected by the call to the State
Determination procedure, and consequently removed that component as well. For the
second requirement, the analysis has identified Quat4 as the (global) variable through
which the two components communicate. In addition, although not shown in Fig. 2,
it has derived the property placed as an assumption on this variable by State Deter-
mination, i.e., Quat4 :: quat(NED, Body). This becomes a subordinate requirement to
the original safety requirement, reflecting the hierarchical model structure. The require-

ments hierarchy is completed by the assumptions placed on the variables Vel1 and Quat2
corresponding to the components’ input signals.

The property derived for Quat4 also becomes part of the interfaces of both com-
ponents that are connected through this link, as assumption on the State Determination
and as safety requirement on Frame Conversion. By regrouping the analysis results by
component rather than by original safety requirement, we thus obtain full component in-
terfaces. They give a complete functional specification of the component, including all
assumptions, as far as it is required to satisfy the given system-level safety requirements.
The interfaces also serve as starting point for verifying the components independently,
hence allowing a compositional (and therefore scalable) verification.

The recovered system architecture and requirements hierarchy already constitute a
core safety argument: Navigation satisfies the safety requirement (2′) if the components
Frame Conversion and State Determination satisfy their respective interfaces, and the
requirements for Vel1, Quat2, and Quat4 hold. This argument can serve as blueprint for
a full-fledged safety case. In addition, the derived component interfaces serve as starting
points for the construction of independent safety cases for the components, yielding a
hierarchy of safety cases that is aligned with the system’s hierarchy of models.

3.3 Arguing from System-Level Safety Requirements to Component-Level
Safety Requirements

The upper part of the safety case argues the safety of the method of formal reasoning
that we use but also points out the important provisos that we abstract away from real-
time, and numerical issues. This is a straightforward modification of our previous work
on programs without hierarchical system structure (see Fig. 3 Tier I: Explaining the
Safety Notion in [5]). Here, we thus focus on the lower part of the safety case that
explains that, and how, the generated source code Nav.cpp satisfies the given safety
requirements by providing formal proofs as evidence (see Fig. 3).

The key argument strategy here is to argue over each individual requirement that
contributes to the program safety. The additional information that is required for the
strategy to be understood and valid is identified and explained. This concerns the in-
dependent validity of the safety requirements and the logical consistency of the as-
sumptions. We thus assume that no safety requirement is available for use as a (logical)
assumption in the safety proofs, which prevents vacuous proofs based on mutually re-
cursive dependencies between requirements and assumptions. We further assume that
the given and derived assumptions together are consistent, again to prevent vacuous
proofs. Each assumption is justified by a valid justification (e.g., the consistency can be
checked by theorem prover).

As a result of this strategy we get as many subgoals as there are safety requirements
given. Here we focus on the goal (R2) corresponding to the second requirement, i.e.,
that the system shall compute a velocity in the ECI frame in signal vel2. Context nodes
with hyperlinks outline additional evidence in the form of documents, containing, for
example, a detailed description of the system and requirement, and also the result of the
hazard analysis.

The next step of the argument transitions from the informal level to a formalized
safety requirement. This step helps in showing that the formal verification runs over

S
tr

at
eg

y:
 A

rg
um

en
t

ba
se

d
on

 th
e

sy
st

em

ar
ch

ite
ct

ur
e

sl
ic

es

G
o

al
 (

R
1)

:
T

he
 s

ys
te

m
 s

ha
ll

co
m

pu
te

 a
 q

ua
te

rn
io

n
re

pr
es

en
tin

g
a

tr
an

sf
or

m
at

io
n

fr
om

 th
e

E
C

I f
ra

m
e

to

th
e

bo
d

y
fix

ed
 fr

am
e

(B
od

y)
 in

 s
ig

na
l q

ua
t4

A

A J

G
o

al
:

F
or

m
al

 p
ro

of
 th

at
 th

e
N

av
.c

pp
 s

at
is

fie
s

al
l g

iv
en

 r
eq

ui
re

m
en

ts

A
sm

p
t:

 C
on

si
st

en
cy

 o
f f

or
m

al
iz

ed
 g

iv
en

an

d
de

riv
ed

 a
ss

um
pt

io
ns

A
sm

p
t:

 N
o

re
qu

ire
m

en
t i

s
us

ed
 a

s
an

as

su
m

pt
io

n

S
tr

at
eg

y:
 A

rg
um

en
t o

ve
r

ea
ch

 r
eq

ui
re

m
en

t i
nd

iv
id

ua
lly

Ju
st

if
ic

at
io

n
:

In
te

rf
ac

e
In

sp
ec

tio
n

J
Ju

st
if

ic
at

io
n

:
C

he
ck

 b
y

th
eo

re
m

 p
ro

ve
r

C
tx

t:
 P

ro
je

ct

D
oc

um
en

ta
tio

n

on
 C

oo
rd

in
at

e
S

ys
te

m
s

G
o

al
 (

R
2)

:
T

he
 s

ys
te

m
 s

ha
ll

co
m

pu
te

 a

ve
lo

ci
ty

 in
 th

e
E

C
I f

ra
m

e
in

 s
ig

na
l v

el
2

G
o

al
 (

S
1)

:
F

or
m

al

pr
oo

f t
ha

t Q
ua

t 2
::

qu
at

(B
od

y,
 N

A
V

)
ho

ld
s

at
 F

c.
cp

p

S
tr

at
eg

y:
 F

or
m

al
iz

at
io

n
an

d
lo

ca
liz

at
io

n
of

 th
e

re
qu

ire
m

en
t

C
tx

t:

N
av

.m
dl

C
tx

t:
 P

ro
je

ct

D
oc

um
en

ta
tio

n

on
 C

oo
rd

in
at

e
S

ys
te

m
s

S
tr

at
eg

y:
 F

or
m

al
iz

at
io

n
an

d
lo

ca
liz

at
io

n
of

 th
e

re
qu

ire
m

en
t

C
tx

t:

N
av

.m
dl

G
o

al
 (

F
1)

:
G

iv
en

 a

qu
at

er
ni

on
 X

,
X

::q
ua

t(
E

C
I,

B
od

y)

is
 th

e
ap

pr
op

ria
te

fo

rm
al

iz
at

io
n

of
 R

1

E
v:

D

oc
um

en
ta

-
tio

n
of

 th
e

do
m

ai
n

th
eo

ry

G
o

al
 (

L
1)

:
V

ar
ia

bl
e

Q
ua

t 3
 in

 N
av

.c
pp

re

pr
es

en
ts

 th
e

si
gn

al

qu
at

3
in

 th
e

N
av

.m
dl

(lo

ca
liz

at
io

n)

G
o

al
 (

F
2)

:
G

iv
en

 a

ve
lo

ci
ty

 X
,

X
::v

el
(E

C
I)

)
is

 th
e

ap
pr

op
ria

te

fo
rm

al
iz

at
io

n
of

 R
2

G
o

al
 (

L
2)

:
V

ar
ia

bl
e

V
el

2
in

 N
av

.c
pp

re

pr
es

en
ts

 th
e

si
gn

al

ve
l 2

 in
 th

e
N

av
.m

dl

(lo
ca

liz
at

io
n)

A
sm

p
t:

 A
ll

co
m

po
ne

nt
s

an
d

si
gn

al
s

re
le

va
nt

 to
 th

e
re

qu
ire

m
en

t a
re

 id
en

tif
ie

d
th

ro
ug

h
fo

rm
al

 a
na

ly
si

s

A

A

S
tr

at
eg

y:
 A

rg
um

en
t

ba
se

d
on

 th
e

sy
st

em

ar
ch

ite
ct

ur
e

sl
ic

es

A
sm

p
t:

 A
ll

co
m

po
ne

nt
s

an
d

si
gn

al
s

re
le

va
nt

 to
 th

e
re

qu
ire

m
en

t a
re

 id
en

tif
ie

d
th

ro
ug

h
fo

rm
al

 a
na

ly
si

s

E
v:

D

oc
um

en
ta

-
tio

n
of

 th
e

do
m

ai
n

th
eo

ry

E
v:

 N
am

e
m

ap
pi

ng

in
fo

rm
at

io
n

in

th
e

so
ur

ce
 c

od
e

ch
ec

ke
d

by
 <

Y
>

G
o

al
 (

C
1)

:
C

om
p.

F

ra
m

e
C

on
ve

rs
io

n
sa

tis
fie

s
its

 fo
rm

al

sa
fe

ty
 r

eq
ui

re
m

en
ts

G
o

al
 (

C
2)

:
C

om
p.

S

ta
te

 D
et

er
m

in
at

io
n

sa
tis

fie
s

its
 fo

rm
al

sa

fe
ty

 r
eq

ui
re

m
en

ts

G
o

al
 (

S
2)

:
F

or
m

al

pr
oo

f t
ha

t Q
ua

t 4
::

qu
at

(N
E

D
, B

od
y)

ho

ld
s

at
 S

d.
cp

p

G
o

al
 (

S
3)

:
F

or
m

al

pr
oo

f t
ha

t V
el

1:
:

ve
l(N

E
D

)
ho

ld
s

at

S
d.

cp
p

 G
o

al
 (

F
R

2)
:

F
or

m
al

pr

oo
f t

ha
t V

el
2:

:
ve

l(E
C

I)
 h

ol
ds

 fo
r

N
av

.c
pp

G
o

al
 (

F
R

1)
:

F
or

m
al

pr

oo
f t

ha
t Q

ua
t 3

::
qu

at
(E

C
I,

B
od

y)

ho
ld

s
fo

r
N

av
.c

pp

C
tx

t:
 H

az
ar

d
A

na
ly

si
s

C
tx

t:
 H

az
ar

d
A

na
ly

si
s

G
o

al
 (

T
L

B
):

<

P
ro

pe
rt

ie
s

on

in
di

vi
du

al
 to

p-
le

ve
l

bl
oc

ks
 h

ol
d>

A

A
sm

p
t:

 In
te

rf
ac

e
of

 S
ta

te

D
et

er
m

in
at

io
n

is
 s

tr
on

g
en

ou
gh

 to
 e

st
ab

lis
h

th
e

pr
op

er
ty

 (
F

R
2)

A

E
v:

 N
am

e
m

ap
pi

ng

in
fo

rm
at

io
n

in

th
e

so
ur

ce
 c

od
e

ch
ec

ke
d

by
 <

Y
>

A
sm

p
t:

 In
te

rf
ac

e
of

 F
ra

m
e

C
on

ve
rs

io
n

is
 s

tr
on

g
en

ou
gh

 to
 e

st
ab

lis
h

th
e

pr
op

er
ty

 (
F

R
1)

G
o

al
 (

S
5)

:
F

or
m

al

pr
oo

f t
ha

t
H

ea
di

ng
::h

ea
di

ng

ho
ld

s
at

 F
c.

cp
p

G
o

al
 (

S
4)

:
F

or
m

al

pr
oo

f t
ha

t
A

zi
m

ut
h:

:a
zi

m
ut

h
ho

ld
s

at
 F

c.
cp

p

G
o

al
 (

S
6)

:
F

or
m

al

pr
oo

f t
ha

t
Lo

ng
::l

on
g

ho
ld

s
at

F

c.
cp

p

Fig. 3. Arguing from System-Level Requirements to Component-Level Requirements

the correct requirement, based on the right formula and variable, and thus provides
a relevant proof of the program. We use an explicit strategy to describe this transition,
which spawns three subgoals. As already discussed in Section 3.1, the first subgoal (F2)
demonstrates that the formal proof is based on an appropriate formalization of the re-
quirement, and the safety case points to the documentation of the logical domain theory
as evidence of this. The second subgoal (L2) “glues together” model and code levels,
which allows us to build a safety case for the model based on the analysis of the code.
In particular, as discussed in Section 3.2, we need to show the mapping between the sig-

nal names used in the model and the corresponding variable names used in the source
code, which cannot be recovered by our analysis but must be given externally. Here, the
safety case points to the mapping information given in the source code, and that it has
been checked by a reviewer, as evidence. In addition, at this goal we also have to show
the mapping between the model and code files, and in particular, in which code file the
property formalized in (F2) has to be shown. In our example, this is straightforward,
but for larger systems the localization needs more evidence.

With the results of (F2) and (L2) we can now construct the final subgoal (FR2) of
our strategy, which shows that the fully formalized safety requirement Vel2:: vel (ECI)
holds after execution of the code in Nav.cpp. This requirement eventually needs to be
proven formally. However, at this level of abstraction, the safety case does not use an
argument based on the full formal proofs. Instead, we use an argument based on the
system architecture, or more precisely, on the recovered system architecture slices. It
shows how the system level requirements are broken down into the component level
requirements i.e., properties of the part of the system that is relevant to satisfy the re-
quirement (FR2). The strategy is based on the assumption that the formal analysis has
identified all relevant components and signals. We thus reduce (FR2) to a number of
(delayed) subgoals for the components and signals in the architecture slice. For each
component, we need to show that it satisfies the safety requirements specified in its in-
terface (i.e., subgoals (C1) and (C2)). This induces a further assumption on the strategy,
namely that the interface is strong enough to show the requirement (FR2). Delaying the
subgoals allows us to reuse the component-level safety cases. This way, we achieve a
hierarchical structure for the system safety case that mirrors the hierarchy embedded in
the system architecture. If the system contains top-level blocks in addition to the com-
ponents (which is not the case in our example), we need to reason about their properties
as well. This is indicated by the dashed subgoal (TLB). For each variable representing
a signal, we need to show that it satisfies the safety requirements derived by the analy-
sis (i.e., subgoals (S1) to (S5)). This guarantees that the components’ assumptions are
met. These subgoals are delayed here as well, to keep the safety case compact. Their
expanded structure again follows the lines of our previous work [5], and uses the argu-
mentation shown in Fig. 5 (Tier III) of the safety case there with small modifications;
in particular, the notion of safety condition needs to be replaced by that of safety re-
quirement. Note that we make no distinction at this level between subgoals that are
established by the components (S2) and those that are reduced to assumptions about the
system’s input signals and thus have trivial formal proofs, e.g., (S4).

3.4 Arguing from Component-Level Safety Requirements to Source Code

In the next step of our hierarchical development, we argue about the safety of the com-
ponents wrt. their identified interfaces. The component-level safety cases also argue
about a set of requirements, but there are two significant differences to the system-level
safety cases. First, the component-level requirements are already formalized, due to the
use of the formal analysis, so that we do not need to argue about the safety of the formal-
ization and localization any more. Second, the argument will generally go down to the
level of the generated code, with the proofs of the VCs as evidence; obviously, however,
another layer of hierarchy is introduced if a component contains further components.

Goal: Comp. Frame Conversion satisfies
its formal safety requirements

Strategy: Argument over each
safety requirement given in the
interface individually

Goal (FC1): Formal proof that
Quat3:: quat(ECI, Body) holds for
Fc.cpp

Strategy: Hoare style
argument over all relevant
occurrences of Quat3

Strategy: Hoare style
argument over all relevant
occurrences of Quat4

Goal: Quat3::quat(ECI, Body)
holds for Fc.cpp at a single
location, lines #65-67

Goal (FC2): Formal proof that
Quat4:: quat(NED, Body) holds for
Fc.cpp

Goal: Quat4::quat(NED, Body)
holds for Fc.cpp at a single
location, lines #222-223

Asmpt: Quat2 is a quaternion
representing a transformation
from the body fixed frame to
the wander azimuth frame

Asmpt: Azimuth represent
platform azimuth

Asmpt: Long represents
longitude

Asmpt: Quat2 is a quaternion
representing a transformation
from the body fixed frame to
the wander azimuth frame

A

A

A

A

A

A

Asmpt: Azimuth represent
platform azimuth

Asmpt: Heading represents
true heading

Strategy: Argument
using minimum set of
external assumptions

Strategy: Argument
using minimum set of
external assumptions

Goal (FCA1): Formal proof that
Quat3:: quat(ECI, Body) holds for
Fc.cpp, given external assumptions

Goal (FCA2): Formal proof that
Quat4:: quat(NED, Body) holds for
Fc.cpp, given external assumptions

Asmpt: Soundness of
calculus

A

Asmpt: Correctness of
implementation

A

Asmpt: Soundness of
calculus

A

Asmpt: Correctness of
implementation

A

Fig. 4. Component-level safety case for Frame Conversion

Fig 4 shows the safety case for the Frame Conversion component. For each com-
ponent, the strategy is to argue over each individual safety requirement stated in its
interface. Here, we have two requirements, (FC1) which is used to discharge the (essen-
tially identical) system-level goal (FR1) via (C1), and (FC2), which is used to discharge
the signal subgoal (S2). Even though they serve different purposes in the system-level
safety case we treat them the same at the component level. We focus on (FC2) here.

The component interfaces also list the assumptions that the component itself makes
about the environment. However, not all assumptions are used for all requirements, so
we use an explicit strategy to argue only using the minimal set of external (i.e., on the
system’s input signals) assumptions. Note that the use of internal assumptions (e.g., on
Quat4), which have been identified as subgoals in the system-level safety case (i.e., (S2)
in Fig. 3) will be made explicit further down in the component-level safety case.

The next strategy finally transitions from the safety argument to a program correct-
ness proof, using a Hoare-style argument over all relevant occurrences of the variable.
The structure of this Hoare-style argument is determined by the structure of the pro-
gram. In this case, it leads to a single subgoal, proving that the safety requirement holds
at the given source location. This is predicated on the assumptions that the applied
Hoare-calculus is sound, and that the VCG is implemented correctly, which need to be
justified elsewhere. Since the rest of the safety case is constructed as described in our
previous work [5], we do not expand it here any further.

Showing the safety of the component is thus reduced to formally showing the valid-
ity of the VCs associated with each requirement in the interface. If (and only if) proofs
for all corresponding VCs can be found, then the property holds for the entire program.
The construction of safety cases from the proofs is described in our previous work [6].

3.5 Combining System-Level and Component-Level Safety Cases

Splitting the argument into system-level and component-level makes it easier to follow
and allows common sub-arguments to be factored out, but in order to obtain a complete
argument we need to combine the system- and component-level safety cases. However,
simply attaching the entire component-level safety cases to the corresponding compo-
nent goals would introduce redundancies. Clearly, not every safety requirement on the
system level relies on the full set of requirements established by the components, for
example, (FR2) only uses the requirement derived for Quat4 (i.e., goal (FC2) in Fig 4).

We thus replace each component goal only by the “branches” of the component-
level safety case that are required; this information is provided by the program analysis.
For component goals that are shared between different requirements this will lead to an
“unsharing”. For example, (C1) will be replaced by the branch rooted in (FC1) below
(FR1) and by the one rooted in (FC2) below (FR2). However, common subgoals at the
level of the Hoare-style argument, which are based on computations contributing to
different requirements, can remain shared.

Additional changes occur elsewhere in the system-level safety case. The assump-
tions to the architecture-based strategy solving (FR1) and (FR2) can be removed be-
cause the detailed argumentation in the component-level safety case provides the nec-
essary evidence. Further the subgoals associated with the system’s input signals (i.e.,
(S1) and (S3)–(S6)) can be removed because corresponding subgoals still appear as
leafs in the component-level safety case, where they are discharged by the assumptions.
The subgoals on the connecting signals (here only (S2)) will be replaced by the root
goals of the corresponding branches in the component-level safety case (i.e., (FC2))
at the appropriate position in the Hoare-style argument for the client component (i.e.,
State Determination).

4 Safety Case Construction

The safety cases described here quickly become too large for manual development. For-
tunately, the bulk of the argument is based on information provided by AUTOCERT’s
formal program analysis, and the argument structure follows the program and analy-
sis structure, so that a largely automated safety case construction is possible. However,
some information cannot be produced by the program analysis, such as environment
constraints, external assumptions, list of related documents, or model names. This in-
formation must be specified externally by a safety engineer. This also applies to the
formalization of the top-level safety requirements that drive AUTOCERT’s analysis and
their integration with the system-wide hazard analysis and safety case. Even though the
constructed safety cases quickly become too large, an abstraction mechanisms can be
used to highlight different aspects of the safety case. In particular, we can derive safety
cases that are restricted to specific requirements, or to specific subsystems which is
thus construct minimal but consistent safety case slices representing specific categories
of information that help in manual safety case assessment.

In order to support the automated safety case construction, we integrate AUTO-
CERT’s formal program analysis with an existing commercial safety case tool, Ade-
lard’s ASCE v3.5 tool [1]. We extended AUTOCERT to extract the manually specified

information from its own input and to structure this together with all information de-
rived by the analysis into an XML format. The XML file records all the relevant in-
formation needed for the safety case construction. Subsequently, an XSLT program is
used to transform this into a second XML format that logically represents the structure
of the safety case as defined by safety case templates underlying the examples shown
above. Here, the templates were designed so that the same argument structure can eas-
ily be adapted to other programs and systems. Finally, we use a custom Java program
to present the safety case using GSN. The Java program helps to set the position of
the nodes in the safety case which involved some mathematical calculations and to
represent the argument to follow the standard Adelard ASCE file format. This architec-
ture avoids a tight integration of the analysis (i.e., AUTOCERT) and presentation (i.e.,
ASCE) tools, and provides enough flexibility to change the latter with little effort.

The integration is largely completed; in particular, we have already fully automated
the construction of the component-level safety cases that argue down to the code struc-
ture, and make up the overwhelming fraction of the combined safety case. However, the
print quality of these large safety cases is insufficient for presentation, so we choose to
recreate them in Microsoft Word here. The integration of system-level and component-
level safety cases, as described in Section 3.5, requires further implementation work.

5 Related Work

The development and acceptance of a safety argument or safety case is a key element
of safety regulation in most safety-critical sectors [19]. For example, Weaver [21] in
his thesis presents arguments that reflect the contribution of software to a safety-critical
system. Audsley et al. [4] present an argument based on correctness of the specification
mapping, i.e., translation from the system specifications into a model and subsequently
into code. Our work in contrast focuses on deriving a safety case that argues along
the hierarchical structure of systems in model-based development and traces the safety
requirements on the model via the inferred system structure to the code.

With the increased use of model-based development in safety-critical applications,
the integration of safety cases into such approaches has become an important research
topic. For example, Chen et al. [7] introduce an integration of model-based engineer-
ing with safety analysis and safety cases to help in assessing decisions in system de-
sign of automotive embedded systems. Hause and Thom [12] describe how SysML and
UML can be used to model system requirements and how the safety requirements and
other system elements identified in system design were used to construct the safety
case. However, the focus in these papers is typically on extending various modelling
frameworks to simply represent safety cases. Rushby [17] also uses automated theorem
proving technology (based on the Yices SMT solver) to make a safety argument, but
does not construct a detailed safety case. Moreover, his analysis starts with a manually
constructed logic-based model of the system, whose connection to the underlying code
remains unclear. In contrast, we focus on showing safety of the system on the code
level and recover the slices of the system architecture to identify where in the system
the safety requirements are established.

Most safety cases (see for example [11]) are constructed manually, as no advanced
tools are available to support the automatic safety case construction. However, a manual
safety case construction [8] is far from satisfactory as it is a time-consuming and error-
prone process. Most existing safety case construction tools only provide basic drawing
support à la “boxes and arrows”. For example, GSN: ASCE v3.5 from Adelard [1], the
University of York Freeware Visio Add-on and GSNCaseMaker [2] are graphical tools
for creating a safety case by means of a drag and drop interface based on a commercial
drawing tool. Obviously, tools supported by automated analyzers such as AUTOCERT
are needed to produce the complex safety arguments for software. In our work, we inte-
grate formal analysis with a commercial safety case tool (i.e., Adelard’s ASCE tool [1])
to automatically construct the safety case. Parallel to the work on safety cases described
here, we have also used the same underlying information to create safety explanations
in a textual form suitable for code reviews [10]. However, this work does not yet extend
to the model-based reasoning level described here.

6 Conclusions and Future Work

We have described an approach where the hierarchical structure of systems in model-
based development drives the construction of a hierarchical safety case for the generated
code. Here, assurance is not implied by the trust in the generator but follows from a for-
mal analysis of the code. The analysis is based on a set of formal safety requirements
and provides formal proofs for use as evidence. We believe greater confidence in the
assurance claims can be placed if the rationale behind the validity of the translation
from the model to the program can be shown. We thus make explicit reference to the
correct translation from the model level representation to the source level representa-
tion, including an argument over the formalization of the requirement. We show how
the external assumptions on the systems input signals are used in establishing the safety
of the program wrt. the given safety requirement. Like Rushby [17], we believe that “a
safe design will have ensured that the assumptions are valid”. Moreover, Littlewood et
al. [15] explain why there is a very low probability of a claim that has been shown by
a formal proof, actually being false, when the assumptions and evidence are valid. We
thus believe that formal methods can provide the highest level of assurance when they
are combined with explicit safety arguments such as the ones we derived here.

The work described here is still in progress, and we are currently completing the au-
tomatic construction of the safety cases. So far, we only consider nominal component
behavior, but our approach could also be applied to the off-nominal case, provided that
appropriate safety requirements for the off-nominal modes can be identified. We have
applied our technique only to flight code generated by Real-Time Workshop from hier-
archical Simulink models but we are confident that the same approach can be applied to
other modelling systems and generators as well. Future work will focus on complemen-
tary safety cases that argue the safety of the certification framework itself, in particular
the safety of the underlying safety logic (the language semantics and the safety policy).
We believe that the result of our research will clearly communicate the safety claims,
key safety requirements, and evidence required to trust the generated code.

Acknowledgements. This material is based upon work supported by NASA under awards NCC2-
1426 and NNA07BB97C. The first author is funded by the Malaysian Government and USIM.

References

1. ASCE home page (2007), http://www.adelard.com/web/hnav/ASCE.
2. CET GSNCaseMaker (2007), http://www.esafetycase.com.
3. Real-Time Workshop Embedded Coder (2007), http://www.mathworks.com/products/rtwembedded.
4. Audsley, N. C., Bate, I. J., and Crook-Dawkins, S. K.: Automatic Code Generation for Air-

borne Systems. IEEE Aerospace Conf., pp. 8-15, IEEE (2003).
5. Basir, N., Denney, E., and Fischer, B.: Constructing a Safety Case for Automatically Gen-

erated Code from Formal Program Verification Information. SAFECOMP’08, LNCS 5219,
pp. 249-262, Springer (2008).

6. Basir, N., Denney, E., and Fischer, B.: Deriving Safety Cases from Automatically Con-
structed Proofs. 4th IET Intl. Conf. on System Safety (2009).

7. Chen, D.-J. , Johansson, R., Lönn, H., Papadopoulos, Y. , Sandberg, A., Törner, F., and
Törngren, M.: Modelling Support for Design of Safety-Critical Automotive Embedded Sys-
tems. SAFECOMP’08, LNCS 5219, pp. 72-85, Springer (2008).

8. Cockram, T. and Lockwood, B.: Electronic Safety Cases: Challenges and Opportunities.
Safety Critical Systems Symposium’03, Springer (2003).

9. Denney, E. and Fischer, B.: A Generic Annotation Inference Algorithm for the Safety Certi-
fication of Automatically Generated Code. GPCE’06, pp. 121-130, ACM (2006).

10. Denney, E. and Fischer, B.: A Verification-Driven Approach to Traceability and Documen-
tation for Auto-Generated Mathematical Software. ASE’09, pp. 560-564, IEEE (2009).

11. Eurocontrol: Preliminary Safety Case for Enhanced Air Traffic Services in Non-Radar Areas
using ADS-B Surveillance (2008).

12. Hause, M.C. and Thom, F.: Integrated Safety Strategy to Model Driven Development with
SysML. 2nd IET Intl. Conf. on System Safety, pp. 124-129 (2007).

13. Kelly, T. P.: Arguing Safety a Systematic Approach to Managing Safety Cases. PhD Thesis,
University of York (1998).

14. Leveson, N.G., Cha, S.S., and Shimeall, T.J.: Safety Verification of ADA Programs using
Software Fault Trees. IEEE Software, 8(4):48-59 (1991).

15. Littlewood, B. and Wright, D.: The Use of Multilegged Arguments to Increase Confidence
in Safety Claims for Software-Based Systems: A Study Based on a BBN Analysis of an
Idealized Example, IEEE Trans. Software Eng. 33(5):347-365 (2007).

16. O’Halloran, C.: Model Based Code Verification. ICFEM’03, LNCS 2885, pp. 16-25,
Springer (2003).

17. Rushby, J.: A Safety-Case Approach For Certifying Adaptive Systems. AIAA In-
fotech@Aerospace Conference (2009).

18. Schloegel, K., Oglesby, D., Engstrom, E., and Bhatt, D.: Composable Code Generation for
Model-Based Development. Intl. Workshop on Software Compilers for Embedded Systems,
LNCS 2826, pp. 211-225, Springer (2003).

19. UK Ministry of Defence: 00-56 Safety Management Requirements for Defence Systems,
Issue 4 (2007).

20. Vallado, D. A.: Fundamentals of Astrodynamics and Applications, 2nd ed., Microcosm Press
and Kluwer Academic Publishers (2001).

21. Weaver, R. A.: The Safety of Software-Constructing and Assuring Arguments. PhD Thesis,
University of York (2003).

22. Weiss, K.A.: Component-Based Systems Engineering for Autonomous Spacecraft. MSc
Thesis, Massachusetts Institute of Technology (2003).

