Abstract
Belief change studies the way in which a reasoner should maintain its beliefs in the face of newly acquired information. The AGM account of belief change assumes an underlying logic containing classical propositional logic. Recently, there has been interest in studying belief change, specifically contraction, under the Horn fragment of propositional logic (i.e., Horn logic). In this paper we continue this line of research, and propose a Horn contraction that is based on the Epistemic Entrenchment (EE) construction of AGM contraction. The standard EE construction refers to arbitrary disjunctions which are not available in Horn logic. Therefore, we make use of a Horn approximation technique called Horn strengthening. An ideal Horn contraction should be as plausible as an AGM contraction. In other words it should performs identically with AGM contractions when restricted to Horn logic. We demonstrate that no EE based Horn contraction satisfies this criterion unless we apply certain restrictions to the AGM contraction. A representation theorem is proved which identifies the characterising postulates for our Horn contraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Logic 50(2), 510–530 (1985)
Delgrande, J.P.: Horn clause belief change: Contraction functions. In: Proc. KR 2008, pp. 156–165 (2008)
Booth, R., Meyer, T., Varzinczak, I.J.: Next steps in propositional Horn contraction. In: Proc. IJCAI 2009, pp. 702–707 (2009)
Delgrande, J.P., Wassermann, R.: Horn clause contraction function: Belief set and belief base approaches. In: Proc. KR 2010 (2010)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. CUP, Cambridge (2003)
Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrenchment. In: Proc. TARK 1988, pp. 83–95 (1988)
Flouris, G., Plexousakis, D., Antoniou, G.: Generalizing the AGM postulates: preliminary results and applications. In: Proc. NMR 2004, pp. 171–179 (2004)
Langlois, M., Sloan, R.H., Szörényi, B., Turán, G.: Horn complements: Towards Horn-to-Horn belief revision. In: Proc. AAAI 2008, pp. 466–471 (2008)
Hansson, S.O.: Belief contraction without recovery. Studia Logica 50(2), 251–260 (1991)
Selman, B., Kautz, H.: Knowledge compilation using Horn approximations. In: Proc. AAAI 1991, pp. 904–909. MIT Press, Cambridge (1991)
Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)
Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(2), 157–170 (1988)
Rott, H.: Preferential belief change using generalized epistemic entrenchment. JoLLI 1(1), 45–78 (1992)
Hansson, S.O.: Changes of disjunctively closed bases. JoLLI 2(4), 255–284 (1993)
Hansson, S.O.: A Textbook of Belief Dynamics Theory Change and Database Updating. Kluwer, Dordrecht (1999)
Booth, R., Meyer, T., Varzinczak, I., Wassermann, R.: A contraction core for Horn belief change: Preliminary report. In: Proc. NMR 2010 (2010)
Rott, H.: Two methods of constructing contractions and revisions of knowledge systems. Journal of Philosophical Logic 20(2), 149–173 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhuang, Z.Q., Pagnucco, M. (2010). Horn Contraction via Epistemic Entrenchment. In: Janhunen, T., Niemelä, I. (eds) Logics in Artificial Intelligence. JELIA 2010. Lecture Notes in Computer Science(), vol 6341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15675-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-15675-5_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15674-8
Online ISBN: 978-3-642-15675-5
eBook Packages: Computer ScienceComputer Science (R0)