Skip to main content

Discovering Motion Patterns for Human Action Recognition

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6298))

Included in the following conference series:

  • 1484 Accesses

Abstract

In this paper, we propose a novel Spatiotemporal Interest Point (MC-STIP) detector based on the coherent motion pattern around each voxel in videos. Our detector defines the local peaks of optical flow as the interest points in the motion coherence volumes of videos. A concatenating histogram of 2D gradients is introduced to describe each interest point as the descriptor. Moreover, we introduce a Topic Matrix Video Representation (T-Mat) for videos. Our representation not only captures the global hidden topics but also preserves the shared discriminative information among the interest point descriptors. We conduct our experiments on three benchmark datasets to recognize human actions using Support Vector Machines with four different kernels. The experiments demonstrate the effectiveness of our new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: ACM Multimedia, pp. 357–360 (2007)

    Google Scholar 

  2. Niebles, J., Wang, H., Li, F.: Unsupervised learning of human action categories using spatial-temporal words. In: BMVC, vol. III, p. 1249 (2006)

    Google Scholar 

  3. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)

    Google Scholar 

  4. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS, pp. 65–72 (2005)

    Google Scholar 

  5. Oikonomopoulos, A., Patras, I., Pantic, M.: Human action recognition with spa- tiotemporal salient points. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 36(3), 710–719 (2006)

    Article  Google Scholar 

  6. Kadir, T., Brady, M.: Saliency, scale and image description. IJCV 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  7. Willems, G., Tuytelaars, T., Gool, L.: An efficient dense and scale-invariant spatio- temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volu- metric features. In: ICCV, vol. 1, pp. 166–173 (October 2005)

    Google Scholar 

  9. Efros, A.A., Berg, E.C., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV, pp. 726–733 (2003)

    Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 20, 91–110 (2003)

    Google Scholar 

  11. Klaeser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC, pp. 995–1004 (2008)

    Google Scholar 

  12. Savarese, S., DelPozo, A., Niebles, J., Li, F.: Spatial-temporal correlations for unsupervised action classification. Motion, 1–8 (2008)

    Google Scholar 

  13. Zhang, Z., Hu, Y., Chan, S., Chia, L.: Motion context: A new representation for human action recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 817–829. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: ICPR, vol. III, pp. 32–36 (2004)

    Google Scholar 

  15. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. In: Mach. Learn., Hingham, MA, USA, vol. 42, pp. 177–196. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  16. Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Methods in Computer Vision. Springer, Heidelberg (2006)

    Book  Google Scholar 

  17. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV, vol. II, pp. 1395–1402 (2005)

    Google Scholar 

  18. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. ICCV 2, 1458–1465 (2005)

    Google Scholar 

  19. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  20. Rodriguez, M., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  21. Schindler, K., van Gool, L.: Action snippets: How many frames does human action recognition require? In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  22. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  23. Wong, S., Cipolla, R.: Extracting spatiotemporal interest points using global in- formation. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Z., Huang, J., Li, ZN. (2010). Discovering Motion Patterns for Human Action Recognition. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15696-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15696-0_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15695-3

  • Online ISBN: 978-3-642-15696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics