Abstract
Accurate segmentation of neonatal brain MR images remains challenging mainly due to poor spatial resolution, low tissue contrast, high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although parametric or geometric deformable models have been successfully applied to adult brain segmentation, to the best of our knowledge, they are not explored in neonatal images. In this paper, we propose a novel neonatal image segmentation method, combining local intensity information, atlas spatial prior and cortical thickness constraint, in a level set framework. Besides, we also provide a robust and reliable tissue surfaces initialization for our proposed level set method by using a convex optimization technique. Validation is performed on 10 neonatal brain images with promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis 9(5), 457–466 (2005)
Xue, H., et al.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38(3), 461–477 (2007)
Shi, F., et al.: Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage 49(1), 391–400 (2010)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Medical Image Analysis 7(4), 43–55 (2000)
Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI. NeuroImage 47(2), 564–572 (2009)
Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI tissue classification method. Medical Image Analysis 7(4), 513–527 (2003)
Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., Dohi, T.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Transactions on Image Processing 17(8), 1295–1312 (2008)
Xu, C., et al.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. Med. Imag. 18(6), 467–480 (1999)
Zeng, X., Staib, L., Schultz, R., Duncan, J.: Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Trans. Med. Imag. 18(10), 100–111 (1999)
MacDonald, D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-d extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage 12(3), 340–356 (2000)
Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Cortex segmentation: a fast variational geometric approach. IEEE Trans. Med. Imag. 21(2), 1544–1551 (2002)
Han, X., et al.: Cruise: Cortical reconstruction using implicit surface evolution. NeuroImage 23(3), 997–1012 (2004)
Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local gaussian distribution fitting energy. Signal Processing 89(12), 2435–2447 (2009)
Li, C., et al.: A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1083–1091. Springer, Heidelberg (2008)
Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: CVPR, pp. 1–7 (2007)
Paragios, N.: A variational approach for the segmentation of the left ventricle in mr cardiac images. In: VLSM 2001 (2001)
Bresson, X., et al.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Chan, T.F., Esedoglu, S., Nikolov, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. CAM Report 09-06, UCLA (2009)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Imag. Proc. 10(2), 266–277 (2001)
Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Dice, L.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D. (2010). Automatic Segmentation of Neonatal Images Using Convex Optimization and Coupled Level Set Method. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)