Skip to main content

Adaptive GPU Ray Casting Based on Spectral Analysis

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6326))

Included in the following conference series:

Abstract

GPU based ray casting has become a valuable tool for the visualization of medical image data. While the method produces high-quality images, its main drawback is the high computational load. We present a novel adaptive approach to speed up the rendering. In contrast to well established heuristic methods, we use the spectral decomposition of the transfer function and the dataset to derive a suitable sampling criterion. It is shown how this criterion can be efficiently incorporated into an adaptive ray casting algorithm. Two medical datasets, which each represent a typical, but different material distribution, are rendered using the proposed method. An analysis of the number of sample points per ray reveals that the new algorithm requires 50% to 80% less points compared to a non-adaptive method without any quality loss. We also show that the rendering speed of the GPU implementation is greatly increased with reference to the non-adaptive algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergner, S., Moller, T., Weiskopf, D., Muraki, D.J.: A spectral analysis of function composition and its implications for sampling in direct volume visualization. IEEE Transactions on Visualization and Computer Graphics 12(5), 1353–1360 (2006)

    Article  Google Scholar 

  2. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 15–22. ACM, New York (2009)

    Chapter  Google Scholar 

  3. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, p. 16. ACM, New York (2001)

    Google Scholar 

  4. Gobbetti, E., Marton, F., Iglesias GuitiĂ¡n, J.A.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer 24(7), 797–806 (2008)

    Article  Google Scholar 

  5. Kraus, M.: Direct volume visualization of geometrically unpleasant meshes (2003)

    Google Scholar 

  6. Kraus, M., Strengert, M., Klein, T., Ertl, T.: Adaptive sampling in three dimensions for volume rendering on GPUs. In: 2007 6th International Asia-Pacific Symposium on Visualization, APVIS 2007, pp. 113–120 (2007)

    Google Scholar 

  7. Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: IEEE Visualization, VIS 2003, pp. 287–292 (2003)

    Google Scholar 

  8. Ljung, P.: Adaptive sampling in single pass, GPU-based raycasting of multiresolution volumes. In: Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pp. 39–46 (2006)

    Google Scholar 

  9. Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume rendering. In: Proceedings of the Conference on Visualization 1994, pp. 100–107. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  10. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware-accelerated volume rendering. In: Proceedings of the Symposium on Data Visualisation 2003, Eurographics Association, p. 238 (2003)

    Google Scholar 

  11. Rubin, G.D., Beaulieu, C.F., Argiro, V., Ringl, H., Norbash, A.M., Feller, J.F., Dake, M.D., Jeffrey, R.B., Napel, S.: Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology 199(2), 321 (1996)

    Google Scholar 

  12. Schulze, J.P., Kraus, M., Lang, U., Ertl, T.: Integrating pre-integration into the shear-warp algorithm. In: Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume Graphics, p. 118. ACM, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suwelack, S., Heitz, E., Unterhinninghofen, R., Dillmann, R. (2010). Adaptive GPU Ray Casting Based on Spectral Analysis. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics