Abstract
This paper proposes a new method to compute connectivity information from diffusion weighted images. It is inspired by graph-based approaches to connectivity definition, but formulates the estimation problem in the continuum. In particular, it defines the connectivity through the minimum cut in tensor-weighted space. It is therefore closely related to prior work on segmentation using continuous versions of graph cuts. A numerical solution based on a staggered grid is proposed which allows for the computation of flux directly through diffusion tensors. The resulting global connectivity measure is the maximum diffusive flow supported between two regions of interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine 50, 1077–1088 (2003)
Lenglet, C., Prados, E., Pons, J., Deriche, R., Faugeras, O.: Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM Journal on Imaging Sciences 2(2), 285–322 (2009)
O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002)
Zalesky, A., Fornito, A.: A DTI-derived measure of cortico-cortical connectivity. IEEE Transactions on Medical Imaging 28(7), 1023–1036 (2009)
Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 106–118 (2006)
Zach, C., Niethammer, M., Frahm, J.M.: Continuous maximal flows and Wulff shapes: Application to MRFs. In: CVPR, pp. 1911–1918 (2009)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)
Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC (2009)
Boyd, S., Vandenberghe, L.: Convex Optimization, Cambridge (2004)
Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in linear and non-linear programming. Stanford University Press, Stanford (1958)
Popov, L.: A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes 28(5), 845–848 (1980)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah functional. In: ICCV (2009)
Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fiber orientations. what can we gain? NeuroImage 34(1), 144–155 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niethammer, M. et al. (2010). DTI Connectivity by Segmentation. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)