Abstract
In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, in the context of image registration, the question of how much information is needed for satisfactory alignment remains unanswered. Low order representation of the diffusivity information is generally more robust than the higher order representation, but the latter gives more information for correct fiber tract alignment. However, higher order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We propose in this paper a hierarchical spherical harmonics based registration algorithm which utilizes the wealth of information provided by HARDI in a more principled means. The image volumes are first registered using robust, relatively direction invariant features derived from the diffusion-attenuation profile, and their alignment is then refined using spherical harmonic (SH) representation of gradually increasing order. This progression of SH representation from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information from the HARDI data. Experimental results show a significant increase in registration accuracy over a state-of-the-art DTI registration algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: ISMRM 1999 (1999)
Tuch, D.: Q-ball imaging. Magnetic Resonance in Medicine 52(6), 1358–1372 (2004)
Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage 45, 153–162 (2009)
Barmpoutis, A., Vemuri, B.C., Forder, J.R.: Registration of high angular resolution diffusion MRI images using 4th order tensors. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 908–915. Springer, Heidelberg (2007)
Geng, X., Ross, J.T., Zhan, W., Gu, H., Chao, Y.P., Lin, C.P., Christensen, G.E., Schuff, N., Yang, Y.: Diffusion MRI registration using orientation distribution functions. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 627–637. Springer, Heidelberg (2009)
Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging 20(11), 1131–1139 (2001)
Cheng, G., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Non-rigid registration of high angular resolution diffusion images represented by Gaussian mixture fields. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 190–197. Springer, Heidelberg (2009)
Bloy, L., Verma, R.: Demons registration of high angular resolution diffusion images. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI 2010), pp. 1013–1016 (2010)
Alexander, D., Barker, G., Arridge, S.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magnetic Resonance in Medicine 48, 331–340 (2002)
Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine 47, 1083–1099 (2002)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance in Medicine 58, 497–510 (2007)
Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodel fiber orientations using the spherical harmonic basis. Magnetic Resonance in Medicine 56, 104–117 (2006)
Christensen, G.E.: Consistent linear-elastic transformations for image matching. In: Information Processing in Medical Imaging, pp. 224–237 (1999)
Yap, P.T., Wu, G., Zhu, H., Lin, W., Shen, D.: Fast Tensor Image Morphing for Elastic Registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 721–729. Springer, Heidelberg (2009)
Yap, P.T., Wu, G., Zhu, H., Lin, W., Shen, D.: F-TIMER: Fast Tensor Image Morphing for Elastic Registration. IEEE Transactions on Medical Imaging 29, 1192–1203 (2010)
Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89(2-3), 114–141 (2003)
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., Luca, M.D., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., Stefano, N.D., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as fsl. NeuroImage (23), S208–S219 (2004)
Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, vol. 2759 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yap, PT., Chen, Y., An, H., Gilmore, J.H., Lin, W., Shen, D. (2010). Hierachical Spherical Harmonics Based Deformable HARDI Registration. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)