Abstract
Electromagnetic navigation bronchoscopy requires the accurate registration of a preinterventional computed tomography (CT) image to the coordinate system of the electromagnetic tracking system. Current state-of-the-art registration methods are manual or do not explicitly take patient’s respiratory motion and exact airway shape into account, leading to relatively low accuracy. This paper presents an automated registration method addressing these issues. Electromagnetic tracking data recorded during bronchoscopic examination is matched to the airways by an optimizer utilizing the Euclidean distance map to the centerline of the airways for automated registration. Using a cutaneous sensor on the chest of the patient allows us to approximate respiratory motion by a linear deformation model and adopt the registration result in real time to the current respiratory phase. A thorough in silico evaluation on real patient data including CT images taken in 10 respiratory phases shows the significant registration error decrease of our method compared to the current state of the art, reducing the error from 3.5 mm to 2.8 mm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eberhardt, R., Anantham, D., Herth, F., Feller-Kopman, D., Ernst, A.: Electromagnetic navigation diagnostic bronchoscopy in peripheral lung lesions. Chest 131(6), 1800–1805 (2007)
Bertoletti, L., Robert, A., Cottier, M., Chambonniere, M.L., Vergnon, J.M.: Accuracy and feasibility of electromagnetic navigated bronchoscopy under nitrous oxide sedation for pulmonary peripheral opacities: An outpatient study. Respiration 78(3), 293–300 (2009)
Bricault, I., Ferretti, G., Cinquin, P.: Registration of real and CT-derived virtual bronchoscopic images to assist transbronchial biopsy. IEEE Trans. Med. Imag. 17(5), 703–714 (1998)
Rai, L., Helferty, J.P., Higgins, W.E.: Combined video tracking and image-video registration for continuous bronchoscopic guidance. Int. J. CARS 3, 315–329 (2008)
Gergel, I., dos Santos, T.R., Tetzlaff, R., Maier-Hein, L., Meinzer, H.P., Wegner, I.: Particle filtering for respiratory motion compensation during navigated bronchoscopy. In: SPIE Medical Imaging (2010)
Soper, T.D., Haynor, D.R., Glenny, R.W., Seibel, E.J.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE Trans. Biomed. Eng. 57(3), 736–745 (2010)
Deguchi, D., Ishitani, K., Kitasaka, T., Mori, K., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: A method for bronchoscope tracking using position sensor without fiducial markers. In: SPIE Medical Imaging (2007)
Klein, T., Traub, J., Hautmann, H., Ahmadian, A., Navab, N.: Fiducial-free registration procedure for navigated bronchoscopy. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 475–482. Springer, Heidelberg (2007)
Mori, K., Deguchi, D., Kitasaka, T., Suenaga, Y., Hasegawa, Y., Imaizumi, K., Takabatake, H.: Improvement of accuracy of marker-free bronchoscope tracking using electromagnetic tracker based on bronchial branch information. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 535–542. Springer, Heidelberg (2008)
Borgert, J., Krüger, S., Timinger, H., Krücker, J., Glossop, N., Durrani, A., Viswanathan, A., Wood, B.J.: Respiratory motion compensation with tracked internal and external sensors during CT-guided procedures. Comput. Aided Surg. 11(3), 119–125 (2006)
Vanden Berghen, F., Bersini, H.: CONDOR, a new parallel, constrained extension of powell’s UOBYQA algorithm: Experimental results and comparison with the DFO algorithm. J. Comput. Appl. Math. 181, 157–175 (2005)
Vandemeulebroucke, J., Sarrut, D., Clarysse, P.: The POPI-model, a point-validated pixel-based breathing thorax model. In: ICCR (2007)
Feuerstein, M., Kitasaka, T., Mori, K.: Automated anatomical likelihood driven extraction and branching detection of aortic arch in 3-D chest CT. In: Second International Workshop on Pulmonary Image Analysis, pp. 49–60 (2009)
Wegner, I., Tetzlaff, R., Biederer, J., Wolf, I., Meinzer, H.P.: An evaluation environment for respiratory motion compensation in navigated bronchoscopy. In: SPIE Medical Imaging (2008)
Kirsch, S.R., Schilling, C., Brunner, G.: Assessment of metallic distortions of an electromagnetic tracking system. In: SPIE Medical Imaging (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feuerstein, M., Sugiura, T., Deguchi, D., Reichl, T., Kitasaka, T., Mori, K. (2010). Marker-Free Registration for Electromagnetic Navigation Bronchoscopy under Respiratory Motion. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)