Abstract
Statistical shape models provide versatile tools for incorporating statistical priors for image segmentation. Difficulties arise, however, when the target anatomical shape differs significantly from the training set used for model construction. This paper presents a novel approach for fast and accurate segmentation of subject-specific geometries based on models largely derived from normal subjects. This technique is particularly suitable for analyzing complex structures such as severely abnormal patient datasets. The proposed method uses online principal component update to incorporate subject-specific geometry. Mixture models are used to estimate the latent density distribution of the data, thus enabling adequate constraining during active shape propagation. Validation based on hypertrophic cardiomyopathy (HCM) datasets with MRI shows significant improvement in overall accuracy and increased adaptation to complex structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cootes, T.F., Taylor, C.J.: Active shape models. In: British Machine Vision Conference, pp. 266–275 (1992)
Cecchi, F., Yacoub, M.H., Olivotto, I.: Hypertrophic cardiomyopathy in the community: why we should care. Nature Clinical Practice Cardiovascular Medicine 2, 324–325 (2005)
Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Transaction on Medical Imaging 22, 414–423 (2003)
Wang, Y., Staib, L.H.: Boundary finding with prior shape and smoothness models. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 738–743 (2000)
Lötjönen, J., Antila, K., Lamminmäki, E., Koikkalainen, J., Lilja, M., Cootes, T.F.: Artificial enlargement of a training set for statistical shape models: Application to cardiac images. In: Functional Imaging and Modelling of the Heart, FIMH (2005)
Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Bidirectional segmentation of three-dimensional cardiac MR images using a subject-specific dynamical model. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 450–457. Springer, Heidelberg (2008)
Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)
Skočaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: ICCV, vol. 2, pp. 1494–1501 (2003)
Cootes, T.F., Taylor, C.J.: A mixture model for representing shape variation. Image and Vision Computing 17, 567–573 (1999)
McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering, vol. 84. Marcel Dekker, Inc., New York (1998)
Fussenegger, M., Roth, P., Bischof, H., Deriche, R., Pinz, A.: A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking. Image and Vision Computing 27, 1157–1168 (2009)
Cootes, T.F., Taylor, C.J.: Active shape model search using local grey-level models: a quantitive evaluation. In: British Machine Vision Conference, pp. 639–648 (1993)
Crappé, O., Moulines, E.: On-line expectation-maximization algorithm for latent data models. Journal of the Royal Statistical Society B 71, 593–613 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Lekadir, K., EI-Hamamsy, I., Yacoub, M., Yang, GZ. (2010). Subject Specific Shape Modeling with Incremental Mixture Models . In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)