Skip to main content

Optimisation of Focal Length Using a Stereoscopic Operating Microscope for Augmented Reality Surgical Guidance

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6326))

Included in the following conference series:

  • 2195 Accesses

Abstract

In this paper, a method is proposed that improves the focal length estimation in an augmented reality surgical guidance system for procedures involving a stereoscopic surgical microscope. Firstly, we show the sensitivity of a photogrammetric calibration method towards the detection of 2D markers in the projected calibration image and the markers’ positional accuracy on the calibration object, both of them affecting the accuracy of the focal length estimate. Secondly, we propose a hybrid method using a photogrammetric method for pre-calibration and a number of self-calibration based methods to further optimise the focal length estimate. The results of the reported experiment, evaluating the proposed method, show a significant improvement in the calibration error of around 0.2 pixels as compared to calibrating each camera separately using a photogrammetric method only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation 3(4), 323–344 (1987)

    Article  Google Scholar 

  2. Faugeras, O., Luong, Q.T., Maybank, S.: Camera self-calibration: Theory and experiments. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 321–334. Springer, Heidelberg (1992)

    Google Scholar 

  3. Lourakis, M., Deriche, R.: Camera self-calibration using the singular value decomposition of the fundamental matrix. In: 4th Asian Conference on Computer Vision, vol. 1, pp. 403–408 (2000)

    Google Scholar 

  4. Edwards, P., King, A., Maurer, C., de Cunha, D., Hawkes, D., Hill, D., Gaston, R., Fenlon, M., Chandra, S., Strong, A., Chandler, C., Richards, A., Gleeson, M.: Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Transactions on Medical Imaging 19, 1082–1093 (2000)

    Article  Google Scholar 

  5. Caversaccio, M., Garcia-Giraldez, J., Gonzalez-Ballester, M., Marti, G.: Image-guided surgical microscope with mounted minitracker. The Journal of Laryngology & Otology 121, 160–162 (2007)

    Article  Google Scholar 

  6. Barreto, J., Roquette, J., Sturm, P., Fonseca, F.: Automatic camera calibration applied to medical endoscopy. In: British Machine Vision Conference, BMVC 2009 (2009)

    Google Scholar 

  7. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality, ISMAR 2007 (2007)

    Google Scholar 

  8. González-García, G.: Optimised Calibration, Registration and Tracking for Image Enhanced Surgical Navigation. PhD thesis, University of East Anglia, United Kingdom (March 2010)

    Google Scholar 

  9. Heikkilä, J., Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 1106–1112 (1997)

    Google Scholar 

  10. Lapeer, R., Chen, M., Gonzalez, G., Linney, A., Alusi, G.: Image-enhanced surgical navigation for endoscopic sinus surgery: Evaluating calibration, registration and tracking. The International Journal of Medical Robotics and Computer Assisted Surgery (IJMRCAS) 4(1), 32–45 (2008)

    Article  Google Scholar 

  11. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision (ICCV 1999), vol. 1, pp. 666–673 (September 1999)

    Google Scholar 

  12. Luong, Q.: Fundamental Matrix and Self-calibration. PhD thesis, University of Paris, Orsay (December 1992)

    Google Scholar 

  13. Sturm, P., Cheng, Z., Chen, P., Poo, A.: Focal length calibration from two views: Method and analysis of singular cases. Computer Vision and Image Understanding 99(1), 58–95 (2005)

    Article  Google Scholar 

  14. Longuet-Higgins, H.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  15. Armangué, X., Salvi, J.: Overall view regarding fundamental matrix estimation. In: Image and Vision Computing, pp. 205–220 (2003)

    Google Scholar 

  16. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. International Journal of Computer Vision 27(2), 161–198 (1998)

    Article  Google Scholar 

  17. Bougnoux, S.: From projective to euclidean space under any practical situation, a criticism of self-calibration. In: International Conference on Computer Vision (ICCV 1998), pp. 790–796 (1998)

    Google Scholar 

  18. Sturm, P.: On focal length calibration from two views. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001) 2, 145–150 (2001)

    Google Scholar 

  19. Newsam, G., Huynh, D., Brooks, M., Pan, H.P.: Recovering unknown focal lengths in self-calibration: An essentially linear algorithm and degenerate configurations. Int. Arch. Photogrammetry Remote Sensing 31(B3), 575–580 (1996)

    Google Scholar 

  20. Tordoff, B., Murray, D.: Violating rotating camera geometry: The effect of radial distortion on self-calibration. In: 15th International Conference on Pattern Recognition (ICPR 2000), vol. 1, pp. 423–427 (2000)

    Google Scholar 

  21. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  22. Salman, A., Engelbrecht, A., Omran, M.: Empirical analysis of self-adaptive differential evolution. European Journal of Operational Research 183(2), 785–804 (2007)

    Article  MATH  Google Scholar 

  23. Omran, M., Salman, A.: Constrained optimization using CODEQ. Chaos, Solitons and Fractals 42(2), 662–668 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-García, G., Lapeer, R.J. (2010). Optimisation of Focal Length Using a Stereoscopic Operating Microscope for Augmented Reality Surgical Guidance. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics